TY - JOUR
T1 - Nanofluidic Behaviors of Water and Ions in Covalent Triazine Framework (CTF) Multilayers
AU - Wei, Mingjie
AU - Zhou, Wei
AU - Xu, Fang
AU - Wang, Yong
N1 - Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Covalent triazine frameworks (CTFs) hosting arrays of highly ordered sub-2-nm pores are expected to exhibit unusual nanofluidic behaviors, which may enable important applications such as desalination. Herein, nonequilibrium molecular dynamics simulations are applied to investigate transport of water and ions inside two typical CTFs—CTF-1, and CTF-2—having intrinsic pores of 1.2 and 1.5 nm, respectively. Their monolayers exhibit extremely high water permeance but weak ion rejection. CTF multilayers are then investigated. Transport resistances composed of interior and interfacial contribution are correlated with stacking numbers of CTF monolayers to develop equations of predicting water permeance. It is revealed that both the stacking fashion and the number of CTF monolayers forming multilayers significantly influence permeation and ion rejection. Staggered multilayers exhibit much higher ion rejection than eclipsed ones. Staggered CTF-2 multilayers completely reject ions because the interlayer paths between two adjacent staggered monolayers allow only water molecules to pass through. Importantly, it is predicted from the equations that few-layered staggered CTF-2 multilayers, which can be relatively easily produced by experimental methods, exhibit 100% NaCl rejection and up to 100 times higher permeance than commercial reverse osmosis membranes, implying their great potential as building blocks to prepare next-generation desalination membranes.
AB - Covalent triazine frameworks (CTFs) hosting arrays of highly ordered sub-2-nm pores are expected to exhibit unusual nanofluidic behaviors, which may enable important applications such as desalination. Herein, nonequilibrium molecular dynamics simulations are applied to investigate transport of water and ions inside two typical CTFs—CTF-1, and CTF-2—having intrinsic pores of 1.2 and 1.5 nm, respectively. Their monolayers exhibit extremely high water permeance but weak ion rejection. CTF multilayers are then investigated. Transport resistances composed of interior and interfacial contribution are correlated with stacking numbers of CTF monolayers to develop equations of predicting water permeance. It is revealed that both the stacking fashion and the number of CTF monolayers forming multilayers significantly influence permeation and ion rejection. Staggered multilayers exhibit much higher ion rejection than eclipsed ones. Staggered CTF-2 multilayers completely reject ions because the interlayer paths between two adjacent staggered monolayers allow only water molecules to pass through. Importantly, it is predicted from the equations that few-layered staggered CTF-2 multilayers, which can be relatively easily produced by experimental methods, exhibit 100% NaCl rejection and up to 100 times higher permeance than commercial reverse osmosis membranes, implying their great potential as building blocks to prepare next-generation desalination membranes.
KW - covalent triazine frameworks
KW - desalination
KW - membranes
KW - nonequilibrium molecular dynamics
KW - transport resistance
UR - http://www.scopus.com/inward/record.url?scp=85074016126&partnerID=8YFLogxK
U2 - 10.1002/smll.201903879
DO - 10.1002/smll.201903879
M3 - 文章
C2 - 31599122
AN - SCOPUS:85074016126
SN - 1613-6810
VL - 16
JO - Small
JF - Small
IS - 9
M1 - 1903879
ER -