Abstract
The biocatalytic asymmetric reduction of prochiral ketones for the production of enantiopure alcohols is highly desirable due to its inherent advantages over chemical methods. In this study, a new bacterial strain capable of transforming ketones to corresponding alcohols with high activity and excellent enantioselectivity was discovered in a soil sample. The strain was subsequently identified as Bacillus cereus TQ-2 based on its physiological characteristics and 16S rDNA sequence analysis. Under optimized reaction conditions, the resting cells of B. cereus TQ-2 converted acetophenone to enantioenriched (R)-1-phenylethanol with 99% enantiometric excess following anti-Prelog’s rule, which is scarce in biocatalytic ketone reduction. The optimum temperature for the cells was 30 °C, and considerable catalytic activity was observed over a broad pH range from 5.0 to 9.0. The cells showed enhanced catalytic activity in the presence of 15% (v/v) glycerol as a co-substrate. The catalytic activity can also be substantially improved by adding Ca2+ or K+ ions. Moreover, the B. cereus TQ-2 cell was highly active in reducing several structurally diverse ketones and aldehydes to form corresponding alcohols with good to excellent conversion. Our study provides a versatile whole-cell biocatalyst that can be used in the asymmetric reduction of ketones for the production of chiral alcohol, thereby expanding the biocatalytic toolbox for potential practical applications.
Original language | English |
---|---|
Article number | 1422 |
Journal | Molecules |
Volume | 28 |
Issue number | 3 |
DOIs | |
State | Published - Feb 2023 |
Keywords
- Bacillus cereus
- anti-Prelog stereoselectivity
- biocatalysis
- chiral alcohols
- whole cells