TY - JOUR
T1 - Novel multifunctional organic semiconductor materials based on 4,8-substituted 1,5-naphthyridine
T2 - Synthesis, single crystal structures, opto-electrical properties and quantum chemistry calculation
AU - Wang, Kun Yan
AU - Chen, Chen
AU - Liu, Jin Fang
AU - Wang, Qin
AU - Chang, Jin
AU - Zhu, Hong Jun
AU - Li, Chong
PY - 2012/9/7
Y1 - 2012/9/7
N2 - A series of 4,8-substituted 1,5-naphthyridines (1a-1h) have been successfully synthesised by a Suzuki cross-coupling between 4,8-dibromo-1,5- naphthyridine (4) and the corresponding boronic acids (2a-2h) in the presence of catalytic palladium acetate in yields of 41.4-75.8% and have ben well characterized. They are thermally robust with high phase transition temperatures (above 186 °C). Compounds 1b, 1e and 1f crystallized in the monoclinic crystal system with the space groups P21/c, P21/c and P21/n, respectively. All of them show the lowest energy absorption bands (λmaxAbs: 294-320 nm), revealing low optical band gaps (2.77-3.79 eV). These materials emit blue fluorescence with λmaxEm ranging from 434-521 nm in dilute solution in dichloromethane and 400-501 nm in the solid state. 4,8-Substituted 1,5-naphthyridines 1a-1h have estimated electron affinities (EA) of (2.38-2.72 eV) suitable for electron-transport materials and ionization potentials (IP) of 4.85-5.04 eV facilitate excellent hole-injecting/hole-transport materials properties. Quantum chemical calculations using DFT B3LYP/6-31G* showed nearly identical the lowest unoccupied molecular orbitals (LUMO) of -2.39 to -2.19 eV and the highest occupied molecular orbitals (HOMO) of -5.33 to -6.84 eV. These results demonstrate the 4,8-substituted 1,5-naphthyridines 1a-1h with a simple architecture might be promising blue-emitting (or blue-green-emitting) materials, electron-transport materials and hole-injecting/hole-transport materials for applications for developing high-efficiency OLEDs.
AB - A series of 4,8-substituted 1,5-naphthyridines (1a-1h) have been successfully synthesised by a Suzuki cross-coupling between 4,8-dibromo-1,5- naphthyridine (4) and the corresponding boronic acids (2a-2h) in the presence of catalytic palladium acetate in yields of 41.4-75.8% and have ben well characterized. They are thermally robust with high phase transition temperatures (above 186 °C). Compounds 1b, 1e and 1f crystallized in the monoclinic crystal system with the space groups P21/c, P21/c and P21/n, respectively. All of them show the lowest energy absorption bands (λmaxAbs: 294-320 nm), revealing low optical band gaps (2.77-3.79 eV). These materials emit blue fluorescence with λmaxEm ranging from 434-521 nm in dilute solution in dichloromethane and 400-501 nm in the solid state. 4,8-Substituted 1,5-naphthyridines 1a-1h have estimated electron affinities (EA) of (2.38-2.72 eV) suitable for electron-transport materials and ionization potentials (IP) of 4.85-5.04 eV facilitate excellent hole-injecting/hole-transport materials properties. Quantum chemical calculations using DFT B3LYP/6-31G* showed nearly identical the lowest unoccupied molecular orbitals (LUMO) of -2.39 to -2.19 eV and the highest occupied molecular orbitals (HOMO) of -5.33 to -6.84 eV. These results demonstrate the 4,8-substituted 1,5-naphthyridines 1a-1h with a simple architecture might be promising blue-emitting (or blue-green-emitting) materials, electron-transport materials and hole-injecting/hole-transport materials for applications for developing high-efficiency OLEDs.
UR - http://www.scopus.com/inward/record.url?scp=84864577729&partnerID=8YFLogxK
U2 - 10.1039/c2ob25926e
DO - 10.1039/c2ob25926e
M3 - 文章
AN - SCOPUS:84864577729
SN - 1477-0520
VL - 10
SP - 6693
EP - 6704
JO - Organic and Biomolecular Chemistry
JF - Organic and Biomolecular Chemistry
IS - 33
ER -