On the chronological understanding of the homogeneous dielectric barrier discharge

Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang

Research output: Contribution to journalReview articlepeer-review

28 Scopus citations

Abstract

Dielectric barrier discharges (DBD) are widely utilised non-equilibrium atmospheric pressure plasmas with a diverse range of applications, such as material processing, surface treatment, light sources, pollution control, and medicine. Over the course of several decades, extensive research has been dedicated to the generation of homogeneous DBD (H-DBD), focussing on understanding the transition from H-DBD to filamentary DBD and exploring strategies to create and sustain H-DBD. This paper first discusses the influence of various parameters on DBD, including gas flow, dielectric material, surface conductivity, and mesh electrode. Secondly, a chronological literature review is presented, highlighting the development of H-DBD and the associated understanding of its underlying mechanisms. This encompasses the generation of H-DBD in helium, nitrogen, and air. Lastly, the paper provides a brief overview of multiple-current-pulse (MCP) behaviours in H-DBD. The objective of this article is to provide a chronological understanding of homogeneous dielectric barrier discharge (DBD). This understanding will aid in the design of new experiments aimed at better comprehending the mechanisms behind H-DBD generation and ultimately assist in achieving large-volume H-DBD in an air environment.

Original languageEnglish
Pages (from-to)1132-1150
Number of pages19
JournalHigh Voltage
Volume8
Issue number6
DOIs
StatePublished - Dec 2023
Externally publishedYes

Fingerprint

Dive into the research topics of 'On the chronological understanding of the homogeneous dielectric barrier discharge'. Together they form a unique fingerprint.

Cite this