TY - JOUR
T1 - Optimal Blend between Carbonate Solvents and Fluoroethylene Carbonate for High-Voltage and High-Safety Li(Ni0.8Mn0.1Co0.1)O2 Lithium-Ion Cells
AU - Ouyang, Dongxu
AU - Wang, Kuo
AU - Pang, Yimei
AU - Wang, Zhirong
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/2/13
Y1 - 2023/2/13
N2 - The current work performs a comprehensive investigation to determine the best blend between fluoroethylene carbonate and common carbonate solvents, that is, ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and dimethyl carbonate (DMC), for high-voltage and high-safety lithium-ion cells. These three kinds of electrolytes denoted FEMC, FDEC, and FDMC, respectively, are researched herein. The cells containing FDMC exhibit more superior performance in long-term cycling and high-temperature storage at high voltages. This may be ascribed to the thin but reliable passivation layer constructed on the cathode surface, which improves the electrode/electrolyte interface and restrains the severe side reactions such that the degradation of cells at high voltages and the self-discharge of cells at elevated temperatures are successfully inhibited. Moreover, the FDMC electrolyte illustrates better flame retardancy than FEMC and FDEC electrolytes, and the thermal reactivity between FDMC electrolytes and delithiated cathode materials is suppressed as well, which further improves cells’ inherent safety under abusive conditions. The thermal runaway behavior of FDMC cells at accelerating rate calorimetry tests and nail tests is comparatively gentle; additionally, the thermal runaway induced by overcharge for FDMC cells occurs 35 s later than the other two kinds of cells.
AB - The current work performs a comprehensive investigation to determine the best blend between fluoroethylene carbonate and common carbonate solvents, that is, ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and dimethyl carbonate (DMC), for high-voltage and high-safety lithium-ion cells. These three kinds of electrolytes denoted FEMC, FDEC, and FDMC, respectively, are researched herein. The cells containing FDMC exhibit more superior performance in long-term cycling and high-temperature storage at high voltages. This may be ascribed to the thin but reliable passivation layer constructed on the cathode surface, which improves the electrode/electrolyte interface and restrains the severe side reactions such that the degradation of cells at high voltages and the self-discharge of cells at elevated temperatures are successfully inhibited. Moreover, the FDMC electrolyte illustrates better flame retardancy than FEMC and FDEC electrolytes, and the thermal reactivity between FDMC electrolytes and delithiated cathode materials is suppressed as well, which further improves cells’ inherent safety under abusive conditions. The thermal runaway behavior of FDMC cells at accelerating rate calorimetry tests and nail tests is comparatively gentle; additionally, the thermal runaway induced by overcharge for FDMC cells occurs 35 s later than the other two kinds of cells.
KW - carbonate solvents
KW - fluoroethylene carbonate-based electrolytes
KW - high voltage
KW - lithium-ion cell
KW - safety
UR - http://www.scopus.com/inward/record.url?scp=85146705696&partnerID=8YFLogxK
U2 - 10.1021/acsaem.2c04081
DO - 10.1021/acsaem.2c04081
M3 - 文章
AN - SCOPUS:85146705696
SN - 2574-0962
VL - 6
SP - 2063
EP - 2071
JO - ACS Applied Energy Materials
JF - ACS Applied Energy Materials
IS - 3
ER -