Optimized whole-cell depolymerization of polyethylene terephthalate to monomers using engineered Clostridium thermocellum

Ya Jun Liu, Fei Yan, Weiliang Dong, Yuman Sun, Ren Wei, Yingang Feng

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Polyethylene terephthalate (PET) is a widely produced thermoplastic derived from fossil fuels, and its accumulation and improper waste disposal pose significant environmental concerns. Innovative bio-based recycling technologies have evolved in recent years, offering viable solutions to PET waste-related challenges. While the enzyme-based PET recycling technology utilizing free thermophilic enzymes has already been commercialized, related whole-cell recycling approaches are still in the early stages of research. Here, we improve a Clostridium thermocellum-based whole-cell catalyst for PET depolymerization by integrating beneficial variants of leaf-branch compost cutinase (LCC) into the bacterial chromosome DNA, ensuring stable enzyme expression. We also implement a pH-controlled bioreactor to counteract the pH drop during PET depolymerization, enhancing enzyme stability and stable cell growth. Using this optimized system, we achieve 96.7 % conversion of pretreated waste PET into its monomer, terephthalic acid (TPA), in a 1-L reactor within 10 days. This work demonstrates the potential of whole-cell biocatalysts for efficient PET recycling.

Original languageEnglish
Article number137441
JournalJournal of Hazardous Materials
Volume488
DOIs
StatePublished - 5 May 2025

Keywords

  • LCC
  • PET
  • TPA
  • Thermophilic
  • Whole-cell catalyst

Fingerprint

Dive into the research topics of 'Optimized whole-cell depolymerization of polyethylene terephthalate to monomers using engineered Clostridium thermocellum'. Together they form a unique fingerprint.

Cite this