Participation of Lattice Oxygen in Perovskite Oxide as a Highly Sensitive Sensor for p-Phenylenediamine Detection

Juan He, Xiaomin Xu, Hainan Sun, Tengfei Miao, Meisheng Li, Shouyong Zhou, Wei Zhou

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The harmful effects on the human body from p-phenylenediamine (PPD) in hair dyes can cause allergies and even cancer. Therefore, it is particularly important to accurately control and detect the content of PPD in our daily products and environment. Here, a small amount of non-metallic elemental P doped in perovskite oxide of SrCoO3−δ (SC) forms a good catalytic material, SrCo0.95P0.05O3−δ (SCP), for PPD detection. The improved performance compared with that of the parent SC can be attributed to three contributing factors, including a larger amount of highly oxidative oxygen species O22−/O, better electrical conductivity, and more active sites on the P5+-oxygen bonds of SCP. Moreover, the lattice oxygen mechanism (LOM) with highly active species of lattice O vacancies and adsorbed –OO for electrocatalytic oxidation of PPD by the SCP/GCE (glass carbon electrode) sensor is proposed in our work. More importantly, the SCP/GCE sensor exhibits good stability, a low limit of detection, and high reliability (error < 5.78%) towards PPD determination in real samples of hair dyes, suggesting the substantial research potential for practical applications.

Original languageEnglish
Article number1122
JournalMolecules
Volume28
Issue number3
DOIs
StatePublished - Feb 2023

Keywords

  • electrochemical sensors
  • hair dyes
  • lattice oxygen
  • p-phenylenediamine (PPD)
  • phosphorus-doped SrCoPO

Fingerprint

Dive into the research topics of 'Participation of Lattice Oxygen in Perovskite Oxide as a Highly Sensitive Sensor for p-Phenylenediamine Detection'. Together they form a unique fingerprint.

Cite this