Abstract
The treatment of diabetic wounds remains a great challenge for the medical community. Here, a smart patterned DNA double helix (duplex)-like fabric based on genetically modified spider silk protein (PDF-S) which is inspired by soft plant tendrils, is proposed for diabetic wound treatment. Benefiting from spider silk protein (spidroin); PDF-S is equipped with high strength; high toughness, and excellent biocompatibility. Notably, the fabric crimped through the biomimetic DNA double-helix-like structure can effectively adapt to tensile impact and the maximum stretch rate reaches 1500%. A pattern-based microfluidic channel of PDF-S allowed wound secretion to flow spontaneously through the channel. Meanwhile; due to the optical properties of the introduced photonic crystal structure; PDF-S is equipped with fluorescence enhancement properties; enabling PDF-S to display color-sensitive behavior suitable for wound monitoring and guiding clinical treatment. In addition, to enable sensitive motion monitoring, microelectronic circuits are integrated on the surface of the PDF-S. These unique material features suggest that this study will lead to a new generation of biomimetic artificial spider silk materials for design and application in the biomedical field.
Original language | English |
---|---|
Article number | 2202213 |
Journal | Advanced Healthcare Materials |
Volume | 12 |
Issue number | 4 |
DOIs | |
State | Published - 6 Feb 2023 |
Keywords
- duplex fabrics
- microcircuits
- microfluidics
- photonic crystals
- spidroin
- wound healing