Abstract
This study describes an efficacious and generally applicable synthetic strategy for the incorporation of biologically and physiologically prominent difluoromethyl entity into synthetically crucial hydrazone scaffolds with bench-stable and easily accessible difluoromethyltriphenylphosphonium bromide. The broad substrate scope, excellent functional group compatibility, feasibility of step and atom economical one-pot synthetic manipulation, and environmentally benign and mild reaction conditions rendered this methodology an efficient tool for the preparation of synthetically and pharmaceutically prominent fluorine-containing imino compounds.
Original language | English |
---|---|
Journal | Organic Letters |
DOIs | |
State | Accepted/In press - 2025 |