Abstract
Perovskite oxides have been considered as appropriate alternatives to precious metal catalysts in CH4 combustion due to their excellent activity and sintering-resistance capacity. Herein, an innovative plasma-induced strategy was employed to the one-step preparation of porous LaMnO3 (LMO-P) and cerium-substituted LaMnO3 (LCMO-P) perovskite oxides with enhanced lattice distortion. The increased specific surface area provided numerous active sites for surface diffusion, and formational lattice distortion introduced more active oxygen species. Exceptionally, the defect-enriched porous LMO-P and LCMO-P catalysts displayed supreme low temperature CH4 oxidation activities, giving T90 of 475 °C and 440 °C at a space velocity of 30 000 mL g-1 h-1, respectively. The excellent catalytic activities of plasma-induced perovskite catalysts might be associated with high reactivity of oxygen adspecies as well as preferable reducibility. This study will provide a novel and universal strategy for the synthesis of composite oxide catalysts with rich surface defects.
Original language | English |
---|---|
Pages (from-to) | 2386-2395 |
Number of pages | 10 |
Journal | Environmental Science: Nano |
Volume | 8 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2021 |