Porous Ceramic Metal-Based Flow Battery Composite Membrane

Kang Huang, Feiyan Mu, Xiaoxuan Hou, Hongyan Cao, Xin Liu, Ting Chen, Yu Xia, Zhi Xu

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

In metal-based flow battery, membranes significantly impact energy conversion efficiency and security. Unfortunately, damages to the membrane occur due to gradual accumulation of metal dendrites, causing short circuits and shortening cycle life. Herein, we developed a rigid hierarchical porous ceramic flow battery composite membrane with a sub-10-nm-thick polyelectrolyte coating to achieve high ion selectivity and conductivity, to restrain dendrite, and to realize long cycle life and high areal capacity. An aqueous zinc-iron flow battery prepared using this membrane achieved an outstanding energy efficiency of >80%, exhibiting excellent long-term stability (over 1000 h) and extremely high areal capacity (260 mAh cm−2). Low-field nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering, in situ infrared spectroscopy, solid-state NMR analysis, and nano-computed tomography revealed that the rigid hierarchical pore structures and numerous hydrogen bonding networks in the membrane contributed to the stable operation and superior battery performance. This study contributes to the development of next-generation metal-based flow battery membranes for energy and power generation.

Original languageEnglish
Article numbere202401558
JournalAngewandte Chemie - International Edition
Volume63
Issue number19
DOIs
StatePublished - 6 May 2024

Keywords

  • anti-dendrite
  • ceramic membrane
  • high areal capacity
  • zinc-based flow battery

Fingerprint

Dive into the research topics of 'Porous Ceramic Metal-Based Flow Battery Composite Membrane'. Together they form a unique fingerprint.

Cite this