Abstract
Prediction models, based on ultimate analysis of biomass on dry basis (db) which is leveraged to predict chemical exergy, were proposed in this study. A new concept — chemical exergy per equivalent of available electrons transferred to oxygen (reductance degree) of model 1 was established. The result shows that chemical exergy per reductance degree of model 1 is relatively constant for the values of most biomass (db) beyond the±1% relative error range. A modified reductance degree of biomass was presented, whereas oxygen (O) content was neglected due to its inaccurate value and the high p-value for the coefficient of O variable. Chemical exergy per modified reductance degree of models 2 and 3 was approximated to be nearly a constant. Thus, two theoretical prediction models (model 2 and model 3) for the biomass (db) with and without sulfate (920.08(C/3 + H + S/8), 920.72(C/3 + H)) were established, respectively. The coefficients of the two models are of almost the same value, which indicates that the S content has also a negligible effect on chemical exergy. Model 3 (920.72(C/3 + H)) is also herein proposed for prediction of exergy of biomass. The average relative errors of model 1, model 2 and model 3 are 2.882%, 0.643% and 0.634%, respectively.
Original language | English |
---|---|
Pages (from-to) | 251-258 |
Number of pages | 8 |
Journal | Energy |
Volume | 131 |
DOIs | |
State | Published - 2017 |
Keywords
- Biomass
- Chemical exergy
- Prediction model
- Ultimate analysis