TY - JOUR
T1 - Recent advances in photocatalytic H2O2 production
T2 - modification strategies of 2D materials and in situ application of H2O2
AU - Chen, Guangyuan
AU - Lin, Chenyang
AU - Han, Fangchong
AU - Zhang, Haotian
AU - Zhou, Shijian
AU - Yang, Fu
AU - Kong, Yan
AU - Ang, Edison Huixiang
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2025
Y1 - 2025
N2 - Environmental pollution and the energy crisis are two major problems that threaten human health and restrict industrial development. Hydrogen peroxide (H2O2) is a green oxidant and clean energy widely used in sterilization, degradation of pollutants and as an energy carrier, which is one of the important strategies to solve these two major problems. In recent years, solar-driven photocatalytic production of H2O2 has gained significant attention and been extensively studied. Two dimensional (2D) material photocatalysts offer promising prospects and distinct advantages for H2O2 production. However, their performance is hindered by challenges such as rapid electron-hole recombination, wide bandgaps, and slow reaction kinetics. Additionally, the high solubility of H2O2 in water and its tendency to decompose easily make it difficult to recover from solutions containing sacrificial agents, thereby restricting its practical applications. To the best of our knowledge, there are few reviews focused on the photocatalytic production of H2O2 using 2D material composite catalysts and its in situ applications. This review provides a detailed discussion of various strategies, including introducing vacancy defects, elemental doping, heterojunction engineering, functionalization and multi-strategy coupling, to improve the photocatalytic performance of 2D material composite photocatalysts. Furthermore, this review highlights the in situ applications of H2O2 produced through photocatalysis in diverse fields, including water purification, sterilization, and pharmaceutical intermediate synthesis. It concludes by outlining the key challenges in the photocatalytic production of H2O2 and proposing practical solutions.
AB - Environmental pollution and the energy crisis are two major problems that threaten human health and restrict industrial development. Hydrogen peroxide (H2O2) is a green oxidant and clean energy widely used in sterilization, degradation of pollutants and as an energy carrier, which is one of the important strategies to solve these two major problems. In recent years, solar-driven photocatalytic production of H2O2 has gained significant attention and been extensively studied. Two dimensional (2D) material photocatalysts offer promising prospects and distinct advantages for H2O2 production. However, their performance is hindered by challenges such as rapid electron-hole recombination, wide bandgaps, and slow reaction kinetics. Additionally, the high solubility of H2O2 in water and its tendency to decompose easily make it difficult to recover from solutions containing sacrificial agents, thereby restricting its practical applications. To the best of our knowledge, there are few reviews focused on the photocatalytic production of H2O2 using 2D material composite catalysts and its in situ applications. This review provides a detailed discussion of various strategies, including introducing vacancy defects, elemental doping, heterojunction engineering, functionalization and multi-strategy coupling, to improve the photocatalytic performance of 2D material composite photocatalysts. Furthermore, this review highlights the in situ applications of H2O2 produced through photocatalysis in diverse fields, including water purification, sterilization, and pharmaceutical intermediate synthesis. It concludes by outlining the key challenges in the photocatalytic production of H2O2 and proposing practical solutions.
UR - http://www.scopus.com/inward/record.url?scp=105003714870&partnerID=8YFLogxK
U2 - 10.1039/d5mh00295h
DO - 10.1039/d5mh00295h
M3 - 文献综述
AN - SCOPUS:105003714870
SN - 2051-6347
JO - Materials Horizons
JF - Materials Horizons
ER -