Abstract
Reduced graphene oxide-silica (rGO/SiO2) nanocomposite filler was prepared with a ball milling process and then modified using a coupling agent of NH2C3H6Si(OC2H5)3 (KH-550) to improve its dispersion in the fluoroethylene vinyl ether (FEVE) coating. The surface properties and morphologies of the modified rGO/SiO2 (M-rGO/SiO2) nanocomposite filler and M-rGO/SiO2-reinforced FEVE coating were characterized by using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) and Tafel polarization curves were applied to illustrate the corrosion resistance of the coating. The results showed that the M-rGO/SiO2 composite can disperse well in the coating and efficiently extend the corrosion path, enhancing the anti-corrosion property of the FEVE coating. Therefore, the |Z|0.01 Hz of M-rGO/SiO2 reinforced FEVE coating maintained at around 1010 Ω·cm2 in the 30 days test cycle and a protection efficiency of up to 95.18% was achieved.
Original language | English |
---|---|
Article number | 49689 |
Journal | Journal of Applied Polymer Science |
Volume | 138 |
Issue number | 3 |
DOIs | |
State | Published - 15 Jan 2021 |
Keywords
- coatings, electrochemistry, graphene and fullerenes, nanotubes, surfaces and interfaces