TY - JOUR
T1 - Review on the management of RCCI engines
AU - Li, Jing
AU - Yang, Wenming
AU - Zhou, Dezhi
N1 - Publisher Copyright:
© 2016 Elsevier Ltd
PY - 2017/3/1
Y1 - 2017/3/1
N2 - RCCI (reactivity controlled compression ignition) engines are found to be capable of achieving higher thermal efficiency and ultra-low NOx and PM emissions. The reactivity controlled combustion is accomplished by creating reactivity stratification in the cylinder with the use of two fuels characterized by distinctly different cetane numbers. The low reactivity (i.e., low cetane number) fuel is firstly premixed with air and then charged into the cylinder through the intake manifold; later, the high reactivity (i.e., high cetane number) fuel is injected into the charged mixture through a direct injector. Subsequently, the reactivity stratification is formed. By strategically adjusting the ratio of two fuels and injection timings, the produced reactivity gradient is able to control the combustion phasing and mitigate the pressure rise rate, as well as the heat release rate. Alternatively, structural factors such as CR (compression ratio) and piston bowl geometries can also affect the combustion characteristics of RCCI. Besides the engine management, the fuels that could be utilized in RCCI engines are also crucial to determine the evaporation, mixing, and combustion processes. To gain a comprehensive knowledge on the state-of-the-art of RCCI combustion, detailed review on the management of RCCI engines has been presented in this paper. This review covers the up-to-date research progress of RCCI including the use of alternative fuels and cetane number improvers, and the effects of fuel ratio, different injection strategies, EGR rate, CR and bowl geometry on engine performance and emissions formation. Moreover, the controllability issues are addressed in this article.
AB - RCCI (reactivity controlled compression ignition) engines are found to be capable of achieving higher thermal efficiency and ultra-low NOx and PM emissions. The reactivity controlled combustion is accomplished by creating reactivity stratification in the cylinder with the use of two fuels characterized by distinctly different cetane numbers. The low reactivity (i.e., low cetane number) fuel is firstly premixed with air and then charged into the cylinder through the intake manifold; later, the high reactivity (i.e., high cetane number) fuel is injected into the charged mixture through a direct injector. Subsequently, the reactivity stratification is formed. By strategically adjusting the ratio of two fuels and injection timings, the produced reactivity gradient is able to control the combustion phasing and mitigate the pressure rise rate, as well as the heat release rate. Alternatively, structural factors such as CR (compression ratio) and piston bowl geometries can also affect the combustion characteristics of RCCI. Besides the engine management, the fuels that could be utilized in RCCI engines are also crucial to determine the evaporation, mixing, and combustion processes. To gain a comprehensive knowledge on the state-of-the-art of RCCI combustion, detailed review on the management of RCCI engines has been presented in this paper. This review covers the up-to-date research progress of RCCI including the use of alternative fuels and cetane number improvers, and the effects of fuel ratio, different injection strategies, EGR rate, CR and bowl geometry on engine performance and emissions formation. Moreover, the controllability issues are addressed in this article.
KW - Alternative fuels
KW - Engine management
KW - RCCI
KW - Reactivity
UR - http://www.scopus.com/inward/record.url?scp=84995802037&partnerID=8YFLogxK
U2 - 10.1016/j.rser.2016.11.159
DO - 10.1016/j.rser.2016.11.159
M3 - 文献综述
AN - SCOPUS:84995802037
SN - 1364-0321
VL - 69
SP - 65
EP - 79
JO - Renewable and Sustainable Energy Reviews
JF - Renewable and Sustainable Energy Reviews
ER -