TY - JOUR
T1 - S-scheme SrTiO3/porous ZnO derived by pyrolysis of ZIF-8 composite with efficient photocatalytic activity for pollutant degradation
AU - Cheng, Cheng
AU - Wang, Jian
AU - Zhao, Zhihao
AU - Chen, Changchun
AU - Cui, Sheng
AU - Wang, Yifeng
AU - Pan, Lin
AU - Ni, Yaru
AU - Lu, Chunhua
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/3/10
Y1 - 2022/3/10
N2 - Semiconductor catalyst with high photocatalytic activity can be exploited via heterojunction. In this study, a new S-scheme SrTiO3/porous ZnO composite was rationally devised, successfully prepared by utilizing a two-step pyrolysis of SrTiO3/ZIF-8, and analyzed by various characterization technologies including XRD, SEM, TEM, BET, XPS, PL, UV–vis DRS, and photoelectrochemical and DFT theoretical calculations. A porous structure, tight contact, and a heterojunction formed between SrTiO3 and porous ZnO (ZnOT) can be observed by SEM and TEM images. BET testing indicates that the SrTiO3/porous ZnO composite (S3ZT) shows the highest specific surface area (30.37 m2/g). The band gap values (Eg) of SrTiO3 and ZnOT are around 3.17 and 2.95 eV, which agree with those obtained from DFT calculations. Compared to other samples, the SrTiO3/porous ZnO composite (S3ZT) shows higher light absorption and lower transfer resistance as demonstrated by UV–vis DRS and EIS results. S3ZT presents a superior photocatalytic efficiency of 48.8% in degrading 5 mg/L methyl orange (MO) irradiated by 1 h UV–vis light, which are 7- and 1.5-fold higher than pristine SrTiO3 and ZnOT, respectively. Moreover, based on Mott-Schottky theory, active species trapping experiments, XPS determination, and DFT calculations (energy band gap and work function), it was shown to be reasonable to utilize the S-scheme charge migration process for an explanation regarding the better photocatalytic activity of SrTiO3/porous ZnO composite. Overall, this work will provide an effective protocol for devising and preparing semiconductor photocatalysts with S-scheme heterojunction by utilizing the superior characteristics of MOFs.
AB - Semiconductor catalyst with high photocatalytic activity can be exploited via heterojunction. In this study, a new S-scheme SrTiO3/porous ZnO composite was rationally devised, successfully prepared by utilizing a two-step pyrolysis of SrTiO3/ZIF-8, and analyzed by various characterization technologies including XRD, SEM, TEM, BET, XPS, PL, UV–vis DRS, and photoelectrochemical and DFT theoretical calculations. A porous structure, tight contact, and a heterojunction formed between SrTiO3 and porous ZnO (ZnOT) can be observed by SEM and TEM images. BET testing indicates that the SrTiO3/porous ZnO composite (S3ZT) shows the highest specific surface area (30.37 m2/g). The band gap values (Eg) of SrTiO3 and ZnOT are around 3.17 and 2.95 eV, which agree with those obtained from DFT calculations. Compared to other samples, the SrTiO3/porous ZnO composite (S3ZT) shows higher light absorption and lower transfer resistance as demonstrated by UV–vis DRS and EIS results. S3ZT presents a superior photocatalytic efficiency of 48.8% in degrading 5 mg/L methyl orange (MO) irradiated by 1 h UV–vis light, which are 7- and 1.5-fold higher than pristine SrTiO3 and ZnOT, respectively. Moreover, based on Mott-Schottky theory, active species trapping experiments, XPS determination, and DFT calculations (energy band gap and work function), it was shown to be reasonable to utilize the S-scheme charge migration process for an explanation regarding the better photocatalytic activity of SrTiO3/porous ZnO composite. Overall, this work will provide an effective protocol for devising and preparing semiconductor photocatalysts with S-scheme heterojunction by utilizing the superior characteristics of MOFs.
KW - Methyl orange photodegradation
KW - Porous ZnO
KW - S-scheme mechanism
KW - SrTiO
KW - ZIF-8 pyrolysis
UR - http://www.scopus.com/inward/record.url?scp=85120812735&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2021.163064
DO - 10.1016/j.jallcom.2021.163064
M3 - 文章
AN - SCOPUS:85120812735
SN - 0925-8388
VL - 896
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 163064
ER -