TY - JOUR
T1 - Scalable and sustainable polymer conductivity enhancement through autonomous surface engineering
AU - Zhang, Han
AU - Chen, Tingting
AU - Mao, Zepeng
AU - Zhang, Jun
AU - Zhang, Zhen
AU - Abidi, Noureddine
AU - Lucia, Lucian A.
N1 - Publisher Copyright:
© 2025 Elsevier B.V.
PY - 2025/4/1
Y1 - 2025/4/1
N2 - Developing polymer composites with high thermal and electrical conductivity often faces challenges due to heavy reliance on conductive fillers content or random transfer pathways. Herein, we propose a scalable, sustainable strategy to enhance conductivities by combining conductive filler-loaded semicrystalline polymer with immiscible amorphous polymer through a two-step melt processing. This approach hypothesizes for the first time that the filler preloaded phase encapsulates the amorphous polymer, increasing surface filler content and forming a pseudo-conductive surface. Using polyvinyl chloride and expanded graphite (25 vol%) preloaded high-density polyethylene as a “proof of concept” example, we have achieved in-plane thermal conductivity of 9.34 W·m−1·K−1 and in-plane bulk electrical conductivity of 117.92 S·m−1, representing 84 % and 172 % increases over one-step composite. Melt flow behavior, surface studies, and computational simulations confirmed the pseudo-conductive surface's role. Our strategy is distinguished by its simplicity, cost-effectiveness, scalability, and versatility, offering a sustainable way to enhance electrical and thermal regulation in materials.
AB - Developing polymer composites with high thermal and electrical conductivity often faces challenges due to heavy reliance on conductive fillers content or random transfer pathways. Herein, we propose a scalable, sustainable strategy to enhance conductivities by combining conductive filler-loaded semicrystalline polymer with immiscible amorphous polymer through a two-step melt processing. This approach hypothesizes for the first time that the filler preloaded phase encapsulates the amorphous polymer, increasing surface filler content and forming a pseudo-conductive surface. Using polyvinyl chloride and expanded graphite (25 vol%) preloaded high-density polyethylene as a “proof of concept” example, we have achieved in-plane thermal conductivity of 9.34 W·m−1·K−1 and in-plane bulk electrical conductivity of 117.92 S·m−1, representing 84 % and 172 % increases over one-step composite. Melt flow behavior, surface studies, and computational simulations confirmed the pseudo-conductive surface's role. Our strategy is distinguished by its simplicity, cost-effectiveness, scalability, and versatility, offering a sustainable way to enhance electrical and thermal regulation in materials.
UR - http://www.scopus.com/inward/record.url?scp=86000716515&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2025.161477
DO - 10.1016/j.cej.2025.161477
M3 - 文章
AN - SCOPUS:86000716515
SN - 1385-8947
VL - 509
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 161477
ER -