TY - JOUR
T1 - Self-cleaning, energy-saving aerogel composites possessed sandwich structure
T2 - Improving indoor comfort with excellent thermal insulation and acoustic performance
AU - Song, Zihao
AU - Su, Lei
AU - Yuan, Man
AU - Shang, Sisi
AU - Cui, Sheng
N1 - Publisher Copyright:
© 2024
PY - 2024/5/1
Y1 - 2024/5/1
N2 - In the context of “carbon neutrality and emission peak”, aerogel that can meet national energy saving and emission reduction requirements while achieving efficient noise reduction has become a hot research topic. However, the development of multifunctional applications is greatly limited by the fact that pure aerogel usually exhibits relatively homogeneous properties. In this paper, SA@UGFW sandwich aerogel composites with functional silanes for structural strengthening were developed. SA@UGFW not only demonstrates ultra-lightweight (58 kg/m3) and high-strength properties (0.1 MPa) but also highly efficient self-cleaning capability (water contact angle ≈ 152.4°). The sandwich aerogel created super-efficient thermal insulation (0.015–0.017 W/(m·K)) and sound absorption performances (αmax = 0.93, NRC = 0.51, 9.77 mm). SA@UGFW exhibited a cold surface temperature of 54.2 ℃ and a ΔT of 145.8 ℃ when the heat source temperature was 200 ℃, despite the sample thickness of only 9.77 mm. At this point, ΔT was higher than 70 % of the heat source temperature. The thermal conductivity of SA@UGFW was as low as 0.00975 W/(m·K), even in −40 ℃ environment. In addition, the sandwich aerogel also showed 0.0204 W/(m·K) of low thermal conductivity following ultra-low temperature (-196 ℃) treatment for 168 h. Simulation results show that aerogel building insulation reduces heating energy savings by 31.00 % and cooling energy savings by 27.34 % compared to traditional insulation. Therefore, the sandwich aerogel with multiple functions reported in this paper achieved the enhancement of indoor comfort and was expected to be widely applied in the construction field.
AB - In the context of “carbon neutrality and emission peak”, aerogel that can meet national energy saving and emission reduction requirements while achieving efficient noise reduction has become a hot research topic. However, the development of multifunctional applications is greatly limited by the fact that pure aerogel usually exhibits relatively homogeneous properties. In this paper, SA@UGFW sandwich aerogel composites with functional silanes for structural strengthening were developed. SA@UGFW not only demonstrates ultra-lightweight (58 kg/m3) and high-strength properties (0.1 MPa) but also highly efficient self-cleaning capability (water contact angle ≈ 152.4°). The sandwich aerogel created super-efficient thermal insulation (0.015–0.017 W/(m·K)) and sound absorption performances (αmax = 0.93, NRC = 0.51, 9.77 mm). SA@UGFW exhibited a cold surface temperature of 54.2 ℃ and a ΔT of 145.8 ℃ when the heat source temperature was 200 ℃, despite the sample thickness of only 9.77 mm. At this point, ΔT was higher than 70 % of the heat source temperature. The thermal conductivity of SA@UGFW was as low as 0.00975 W/(m·K), even in −40 ℃ environment. In addition, the sandwich aerogel also showed 0.0204 W/(m·K) of low thermal conductivity following ultra-low temperature (-196 ℃) treatment for 168 h. Simulation results show that aerogel building insulation reduces heating energy savings by 31.00 % and cooling energy savings by 27.34 % compared to traditional insulation. Therefore, the sandwich aerogel with multiple functions reported in this paper achieved the enhancement of indoor comfort and was expected to be widely applied in the construction field.
KW - Building energy saving
KW - Building insulation
KW - Improving comfort
KW - Sandwich-like structure
KW - Self-cleaning aerogel composites
KW - Sound absorption
UR - http://www.scopus.com/inward/record.url?scp=85188565736&partnerID=8YFLogxK
U2 - 10.1016/j.enbuild.2024.114098
DO - 10.1016/j.enbuild.2024.114098
M3 - 文章
AN - SCOPUS:85188565736
SN - 0378-7788
VL - 310
JO - Energy and Buildings
JF - Energy and Buildings
M1 - 114098
ER -