TY - JOUR
T1 - Significantly improved hydrogen storage properties of Mg90Al10 catalyzed by TiF3
AU - Yang, Lili
AU - Li, Shujing
AU - Chen, Jiawen
AU - Liu, Jiangchuan
AU - Zhu, Yunfeng
AU - Liu, Yana
AU - Zhang, Jiguang
AU - Qiao, Yajing
AU - Ba, Zhixin
AU - Li, Liquan
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/7/5
Y1 - 2022/7/5
N2 - Magnesium hydride (MgH2) is one of the most promising materials for solid state hydrogen storage, but overly stable thermodynamics and sluggish kinetics of hydrogenation and dehydrogenation hinders its application. In this study, Mg90Al10 was prepared by hydriding combustion synthesis (HCS), and then various Ti-based compounds (Ti, TiH2, TiO2 and TiF3) were introduced into Mg90Al10 by ball milling. Mg90Al10 + 10 wt% TiF3 displays the most excellent dehydrogenation property compared with those doped with other Ti-based compounds. For instance, due to the addition of 10 wt% TiF3, the peak dehydrogenation temperature and the apparent dehydrogenation activation energy of the composite are 86 °C and 77.1 kJ/mol lower than those of Mg90Al10 (364 °C and 155.95 kJ/mol). In addition, the catalytic effect of TiF3 on the hydrogen storage properties of Mg90Al10 has been investigated in detail. Except for the unreacted TiF3, Al3Ti and MgF2 can be found during the first dehydrogenation process and remain stable in the subsequent de/hydrogenation cycles, which can act as the active sites to accelerate the hydrogen dissociation and recombination. Therefore, the excellent hydrogen storage properties of Mg90Al10 + 10 wt% TiF3 can be attributed to the catalytic effect of TiF3, in-situ formed Al3Ti and MgF2. Our result is very significant to emphasize the practical application of the Mg-Al hydrogen storage alloys.
AB - Magnesium hydride (MgH2) is one of the most promising materials for solid state hydrogen storage, but overly stable thermodynamics and sluggish kinetics of hydrogenation and dehydrogenation hinders its application. In this study, Mg90Al10 was prepared by hydriding combustion synthesis (HCS), and then various Ti-based compounds (Ti, TiH2, TiO2 and TiF3) were introduced into Mg90Al10 by ball milling. Mg90Al10 + 10 wt% TiF3 displays the most excellent dehydrogenation property compared with those doped with other Ti-based compounds. For instance, due to the addition of 10 wt% TiF3, the peak dehydrogenation temperature and the apparent dehydrogenation activation energy of the composite are 86 °C and 77.1 kJ/mol lower than those of Mg90Al10 (364 °C and 155.95 kJ/mol). In addition, the catalytic effect of TiF3 on the hydrogen storage properties of Mg90Al10 has been investigated in detail. Except for the unreacted TiF3, Al3Ti and MgF2 can be found during the first dehydrogenation process and remain stable in the subsequent de/hydrogenation cycles, which can act as the active sites to accelerate the hydrogen dissociation and recombination. Therefore, the excellent hydrogen storage properties of Mg90Al10 + 10 wt% TiF3 can be attributed to the catalytic effect of TiF3, in-situ formed Al3Ti and MgF2. Our result is very significant to emphasize the practical application of the Mg-Al hydrogen storage alloys.
KW - Catalytic mechanism
KW - Hydriding combustion synthesis
KW - Hydrogen storage
KW - Mg-Al alloys
KW - TiF
UR - http://www.scopus.com/inward/record.url?scp=85126969297&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2022.164581
DO - 10.1016/j.jallcom.2022.164581
M3 - 文章
AN - SCOPUS:85126969297
SN - 0925-8388
VL - 908
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 164581
ER -