TY - JOUR
T1 - Solution-processed PEDOT:PSS:GO/Ag NWs composite electrode for flexible organic light-emitting diodes
AU - Du, Hui
AU - Guo, Yangyang
AU - Cui, Dongyue
AU - Li, Shuhong
AU - Wang, Wenjun
AU - Liu, Yunlong
AU - Yao, Yicun
AU - Zhao, Ling
AU - Dong, Xiaochen
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/3/5
Y1 - 2021/3/5
N2 - Flexible organic light emitting diodes (OLEDs) have attracted considerable attention for the reason of light weight, high mechanical flexibility in display and lighting. The most widely used transparent anode indium tin oxide (ITO) is unsuitable for flexible OLEDs because of its easy cracking upon bending. In this paper, we proposed a simple two steps solution processing method to fabricate flexible PEDOT:PSS:GO/Ag NWs composite electrodes. The optimized PEDOT:PSS:GO/Ag NWs composite electrode exhibits an optical transmittance of 88.7% at a wavelength of 550 nm and a low sheet resistance of 17 Ω/sq, which are comparable to that of ITO. With PEDOT:PSS:GO/Ag NWs composite electrodes, the turn on voltage, current density and maximum brightness of OLEDs based on composite electrode were 2.1 V, 6.2 cd/A and 22894 cd/m2, respectively, which were superior to that OLED based on ITO anode. The enhanced performance of OLEDs based on composite anode mainly attributed to the lower sheet resistance, smoother surface of the composite anode and the far surface plasma resonance (Far SPR) effect, a lower waveguide optical loss because of the introduction of Ag NWs in the electrode.
AB - Flexible organic light emitting diodes (OLEDs) have attracted considerable attention for the reason of light weight, high mechanical flexibility in display and lighting. The most widely used transparent anode indium tin oxide (ITO) is unsuitable for flexible OLEDs because of its easy cracking upon bending. In this paper, we proposed a simple two steps solution processing method to fabricate flexible PEDOT:PSS:GO/Ag NWs composite electrodes. The optimized PEDOT:PSS:GO/Ag NWs composite electrode exhibits an optical transmittance of 88.7% at a wavelength of 550 nm and a low sheet resistance of 17 Ω/sq, which are comparable to that of ITO. With PEDOT:PSS:GO/Ag NWs composite electrodes, the turn on voltage, current density and maximum brightness of OLEDs based on composite electrode were 2.1 V, 6.2 cd/A and 22894 cd/m2, respectively, which were superior to that OLED based on ITO anode. The enhanced performance of OLEDs based on composite anode mainly attributed to the lower sheet resistance, smoother surface of the composite anode and the far surface plasma resonance (Far SPR) effect, a lower waveguide optical loss because of the introduction of Ag NWs in the electrode.
KW - Ag NWs
KW - Far surface plasma resonance
KW - Flexible electrode
KW - Organic light emitting diodes
UR - http://www.scopus.com/inward/record.url?scp=85097577295&partnerID=8YFLogxK
U2 - 10.1016/j.saa.2020.119267
DO - 10.1016/j.saa.2020.119267
M3 - 文章
C2 - 33310271
AN - SCOPUS:85097577295
SN - 1386-1425
VL - 248
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
M1 - 119267
ER -