Abstract
Structure modulation of transition metal phosphides at the atomic scale can significantly modify their catalytic properties. Herein, stacking faults abundant Ni2P/Co2P electrocatalysts with outstanding bifunctional oxygen evolution and hydrogen evolution property have been prepared. The stacking faults are formed by slow dissolution of Ni substrate by Mo6+ and further redeposition of Ni2+ during the growth of Co(OH)F crystals. Unprecedentedly, the distinct mechanistic etching-redeposition pathway dictated by the stacking faults, heterostructures and crystal lattice deformation leads to lattice expansion of Co2P and enables preferred reactants adsorption. Electrolysis cell employing Ni2P/Co2P electrocatalysts as a bifunctional catalyst for both the cathode and the anode delivers a current density of 10 mA cm−2 at a cell voltage of 1.57 V, which is comparable to the integrated Pt/C and IrO2 counterparts. The exceptional electrocatalytic performance of Co2P/Ni2P-x%Mo indicates the redeposition mechanism a new methodology to modulate the structure and surface reactivity of electrocatalysts.
Original language | English |
---|---|
Article number | 118951 |
Journal | Applied Catalysis B: Environmental |
Volume | 272 |
DOIs | |
State | Published - 5 Sep 2020 |
Keywords
- Dissolution-recrystallization
- Hydrogen evolution reaction
- Oxygen evolution reaction
- Stacking faults
- Water splitting