TY - JOUR
T1 - Strongly-coupled magnetic nanospheres@trimetallic LDH hooding with thin MXenes veil
T2 - Sandwiched ternary nanostructure towards forging fire-safe EP with low toxicity
AU - Wang, Junling
AU - Yu, Shui
AU - Wang, Zhirong
AU - Zhang, Yan
AU - Pan, Wei
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - Transition metals carbides/nitrides (MXenes) have been utilized as flame retardants for epoxy resin (EP) with inherently high fire hazard. However, when the dosage of MXenes is low, the corresponding flame retardant efficiency is hard to meet the demand. Up to now, MXenes-based nanostructure with high flame retardation effectiveness has been rarely investigated. Hence, we have employed the assembly strategy to acquire a sandwiched ternary nanostructure (MX-Fe@LDH), based on strongly-coupled magnetic nanospheres@trimetallic LDH hooding with thin MXenes veil, which has never been reported before. With only 3.0 wt% MX-Fe@LDH dosage, the peak heat release rate, peak CO production rate, peak CO2 production rate, total CO production are reduced by 51.3%, 70.2%, 49.4%, 74.1%. Comparison with reported works also indicates the high effectiveness of MX-Fe@LDH in flame retardation. The curbed emissions of toxic NO and HCN gases are uncovered via Thermogravimetric analysis-infrared spectrometry test. Postmortem analyses have indicated that using MX-Fe@LDH contributes to engender char with high graphitized degree, which acts as safeguard for basal matrix. Stemming from the rational design, there is a strong mechanical interlocking action between MX-Fe@LDH and EP chains, further prompting the mechanical capabilities. This work may motivate the design of MXenes-based nanostructure towards forging fire-safe polymer composites.
AB - Transition metals carbides/nitrides (MXenes) have been utilized as flame retardants for epoxy resin (EP) with inherently high fire hazard. However, when the dosage of MXenes is low, the corresponding flame retardant efficiency is hard to meet the demand. Up to now, MXenes-based nanostructure with high flame retardation effectiveness has been rarely investigated. Hence, we have employed the assembly strategy to acquire a sandwiched ternary nanostructure (MX-Fe@LDH), based on strongly-coupled magnetic nanospheres@trimetallic LDH hooding with thin MXenes veil, which has never been reported before. With only 3.0 wt% MX-Fe@LDH dosage, the peak heat release rate, peak CO production rate, peak CO2 production rate, total CO production are reduced by 51.3%, 70.2%, 49.4%, 74.1%. Comparison with reported works also indicates the high effectiveness of MX-Fe@LDH in flame retardation. The curbed emissions of toxic NO and HCN gases are uncovered via Thermogravimetric analysis-infrared spectrometry test. Postmortem analyses have indicated that using MX-Fe@LDH contributes to engender char with high graphitized degree, which acts as safeguard for basal matrix. Stemming from the rational design, there is a strong mechanical interlocking action between MX-Fe@LDH and EP chains, further prompting the mechanical capabilities. This work may motivate the design of MXenes-based nanostructure towards forging fire-safe polymer composites.
KW - Epoxy resin
KW - Flame retardation
KW - Mechanical properties
KW - Transition metals carbides
UR - http://www.scopus.com/inward/record.url?scp=85144012240&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2022.155904
DO - 10.1016/j.apsusc.2022.155904
M3 - 文章
AN - SCOPUS:85144012240
SN - 0169-4332
VL - 612
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 155904
ER -