TY - JOUR
T1 - Study on Preparation and Properties of PNIPAm/PPy Hydrogel Hygroscopic Material for Solid Dehumidification System
AU - Liu, Jinlin
AU - Wang, Yu
AU - Zhong, Zilong
AU - Zhou, Zhou
AU - Chen, Dongliang
AU - Wang, Weijie
AU - Mai, Shuaixing
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/7
Y1 - 2023/7
N2 - Air-conditioning systems account for 40–60% of the energy consumption of buildings, and most of this figure corresponds to the cooling and dehumidification process of air-conditioning units. Compared with traditional compressed air-conditioning systems, solid adsorption dehumidification systems possess good potential to improve indoor air quality and reduce buildings’ energy consumption. However, there are still some problems that prevent the use of solid adsorption dehumidification systems, such as their complexity and high regeneration temperatures. The key to solving the above problem is the discovery of more suitable adsorbents. In this paper, poly N-isopropylacrylamide/polypyrrole (PNIPAm/PPy) hydrogel was selected as the research object, and the performance of the dehumidification material and its potential for application in solid dehumidification systems were studied. It was found that the pore structure of PNIPAm/PPy was relatively complex and that there were abundant pores with uneven pore sizes. The minimum pore size was about 4 μm, while the maximum pore size was about 25 μm, and the pore sizes were mostly distributed between 8 and 20 μm. Abundant and dense pores ensure good hygroscopic and water-releasing properties of the resulting hydrogel. The PPy inside the hydrogel acts as both a hygroscopic and photothermal agent. In an environment with a relative humidity of 90%, 60%, and 50%, the hygroscopic efficiency of PNIPAm/PPy reached 80% in about 75, 100, and 120 min, and the corresponding unit equilibrium hygroscopic capacity values were 3.85 g/g, 3.72 g/g, and 3.71 g/g, respectively. In the initial stage, the moisture absorption increased with the increase in time; then, the increase in moisture absorption decreased. When the temperature was below 40 °C, the hygroscopic performance of PNIPAm/PPy was almost temperature-independent. The PNIPAm/PPy with different thicknesses showed similar moisture absorption efficiency. The lowest desorption temperature of PNIPAm/PPy was 40 °C, which indicates that low-grade energy can be used for material desorption. And the higher the temperature, the faster the desorption rate of PNIPAm/PPy and the higher the desorption amount. It can be seen that the PNIPAm/PPy hydrogel presents good desorption performance and can be used repeatedly.
AB - Air-conditioning systems account for 40–60% of the energy consumption of buildings, and most of this figure corresponds to the cooling and dehumidification process of air-conditioning units. Compared with traditional compressed air-conditioning systems, solid adsorption dehumidification systems possess good potential to improve indoor air quality and reduce buildings’ energy consumption. However, there are still some problems that prevent the use of solid adsorption dehumidification systems, such as their complexity and high regeneration temperatures. The key to solving the above problem is the discovery of more suitable adsorbents. In this paper, poly N-isopropylacrylamide/polypyrrole (PNIPAm/PPy) hydrogel was selected as the research object, and the performance of the dehumidification material and its potential for application in solid dehumidification systems were studied. It was found that the pore structure of PNIPAm/PPy was relatively complex and that there were abundant pores with uneven pore sizes. The minimum pore size was about 4 μm, while the maximum pore size was about 25 μm, and the pore sizes were mostly distributed between 8 and 20 μm. Abundant and dense pores ensure good hygroscopic and water-releasing properties of the resulting hydrogel. The PPy inside the hydrogel acts as both a hygroscopic and photothermal agent. In an environment with a relative humidity of 90%, 60%, and 50%, the hygroscopic efficiency of PNIPAm/PPy reached 80% in about 75, 100, and 120 min, and the corresponding unit equilibrium hygroscopic capacity values were 3.85 g/g, 3.72 g/g, and 3.71 g/g, respectively. In the initial stage, the moisture absorption increased with the increase in time; then, the increase in moisture absorption decreased. When the temperature was below 40 °C, the hygroscopic performance of PNIPAm/PPy was almost temperature-independent. The PNIPAm/PPy with different thicknesses showed similar moisture absorption efficiency. The lowest desorption temperature of PNIPAm/PPy was 40 °C, which indicates that low-grade energy can be used for material desorption. And the higher the temperature, the faster the desorption rate of PNIPAm/PPy and the higher the desorption amount. It can be seen that the PNIPAm/PPy hydrogel presents good desorption performance and can be used repeatedly.
KW - dehumidification material
KW - desorption performance
KW - heat and mass transfer in porous media
KW - hydrogel
KW - hygroscopic efficiency
KW - solid dehumidification system
UR - http://www.scopus.com/inward/record.url?scp=85164811166&partnerID=8YFLogxK
U2 - 10.3390/en16135112
DO - 10.3390/en16135112
M3 - 文章
AN - SCOPUS:85164811166
SN - 1996-1073
VL - 16
JO - Energies
JF - Energies
IS - 13
M1 - 5112
ER -