TY - JOUR
T1 - Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability
AU - Sha, Yujing
AU - Zhao, Bote
AU - Ran, Ran
AU - Cai, Rui
AU - Shao, Zongping
PY - 2013/11/14
Y1 - 2013/11/14
N2 - As a lithium-intercalation material, high crystallinity is important for Li4Ti5O12 to achieve good capacity and cycling stability, while a large surface area and a short lithium diffusion distance are critical to increase rate capacity. In this study, well-crystallized Li 4Ti5O12 nanoplates with outstanding electrochemical performance were facially prepared through a two-step hydrothermal preparation with benzyl alcohol-NH3·H 2O (BN) as the solvent and a subsequent intermediate-temperature calcination at 500 °C for 2 h in air. To support the superiority of benzyl alcohol-NH3·H2O (BN) for hydrothermal synthesis, ethanol-NH3·H2O (EN) was also comparatively studied as solvent. In addition, different hydrothermal reaction times were tried to locate the optimal reaction time. The nature of as-prepared Li 4Ti5O12-BN (LTO-BN) and Li4Ti 5O12-EN (LTO-EN) was characterized by XRD, N2 adsorption/desorption tests, SEM, TEM and TGA-DSC. Compared with EN, the BN hydrothermal solvent facilitated the formation of nanosheet-Li 4Ti5O12 with wall thicknesses of 8-15 nm and better crystallization. After a 6 h hydrothermal reaction at 180 °C and subsequent calcination, well-crystallized Li4Ti5O 12-BN nanoplates were produced, which demonstrate a superior discharge capacity of 160 mA h g-1, even at 40 C, maintaining a capacity of 88.8% compared with that at 1 C. The nanoplates also exhibited excellent cycling stability, retaining a discharge capacity of 153 mA h g -1 after 1000 charge-discharge cycles at 10 C.
AB - As a lithium-intercalation material, high crystallinity is important for Li4Ti5O12 to achieve good capacity and cycling stability, while a large surface area and a short lithium diffusion distance are critical to increase rate capacity. In this study, well-crystallized Li 4Ti5O12 nanoplates with outstanding electrochemical performance were facially prepared through a two-step hydrothermal preparation with benzyl alcohol-NH3·H 2O (BN) as the solvent and a subsequent intermediate-temperature calcination at 500 °C for 2 h in air. To support the superiority of benzyl alcohol-NH3·H2O (BN) for hydrothermal synthesis, ethanol-NH3·H2O (EN) was also comparatively studied as solvent. In addition, different hydrothermal reaction times were tried to locate the optimal reaction time. The nature of as-prepared Li 4Ti5O12-BN (LTO-BN) and Li4Ti 5O12-EN (LTO-EN) was characterized by XRD, N2 adsorption/desorption tests, SEM, TEM and TGA-DSC. Compared with EN, the BN hydrothermal solvent facilitated the formation of nanosheet-Li 4Ti5O12 with wall thicknesses of 8-15 nm and better crystallization. After a 6 h hydrothermal reaction at 180 °C and subsequent calcination, well-crystallized Li4Ti5O 12-BN nanoplates were produced, which demonstrate a superior discharge capacity of 160 mA h g-1, even at 40 C, maintaining a capacity of 88.8% compared with that at 1 C. The nanoplates also exhibited excellent cycling stability, retaining a discharge capacity of 153 mA h g -1 after 1000 charge-discharge cycles at 10 C.
UR - http://www.scopus.com/inward/record.url?scp=84885942091&partnerID=8YFLogxK
U2 - 10.1039/c3ta12620j
DO - 10.1039/c3ta12620j
M3 - 文章
AN - SCOPUS:84885942091
SN - 2050-7488
VL - 1
SP - 13233
EP - 13243
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 42
ER -