Abstract
ZIF-8/PVA microspheres with an even size were synthesized with the assistance of a simple microfluidic device. The ZIF-8/PVA microdroplets were first generated in a simple co-flow microfluidic device using a PVA aqueous solution dispersed with ZIF-8 nanoparticles as the dispersed phase and fatty acid methyl ester (FAME) as the continuous phase. Subsequently, the ZIF-8/PVA microdroplets were further extracted to form ZIF-8/PVA microspheres. The influence of the type of continuous phase on the sphericity of microspheres was investigated and the effect of ZIF-8 content was studied. Further studies showed that decreasing the extraction rate and using additives of NaCl in the dispersed phase could improve the sphericity of the ZIF-8/PVA microspheres. Finally, the synthesized ZIF-8/PVA microspheres were used to study the loading and release of tetracycline. The results showed that the loading of ZIF-8/PVA microspheres was more than 5 times higher than that of pure PVA microspheres. The drug release time of ZIF-8/PVA microspheres was much longer than that of the PVA microspheres and the release rate was significantly affected by the pH of the environment.
Original language | English |
---|---|
Article number | 113187 |
Journal | Microporous and Mesoporous Materials |
Volume | 376 |
DOIs | |
State | Published - Aug 2024 |
Keywords
- Controlled drug release
- Microfluidics
- Solvent extraction
- Sphericity control
- ZIF-8/PVA microspheres