Abstract
The search for a low-cost metal-free cathode material with excellent mass transfer structure and catalytic activity in oxygen reduction reaction (ORR) is one of the most challenging issues in fuel cells. In this work, nitrogen-rich m-phenylenediamine is introduced into the synthesis of porous carbon spheres to tune the pore structure and nitrogen-doped active sites. As a result, more pyridinic N and pyrrolic N functional species were observed at the interior and surface of the carbon spheres. The introduction of m-phenylenediamine also regulated the nucleating of precursors, an urchin-like mesoporous surface structure ensures point contact and less agglomeration between each particle was obtained. With optimized proportion of micropores/mesopores and improved nitrogen-contained functional species, the ORR activity can be remarkably improved. The half-wave potential of this catalyst could achieve to 0.81 V (versus RHE) which is only 42 mV lower than commercial Pt/C catalyst. Furthermore, the optimized cathode catalyst achieved a 69 mW cm−2 maximum power density when operated in direct methanol fuel cells at room temperature.
Original language | English |
---|---|
Pages (from-to) | 81-87 |
Number of pages | 7 |
Journal | Energy and Environmental Materials |
Volume | 4 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2021 |
Keywords
- fuel cells
- metal-free catalysts
- nitrogen-doped porous carbon
- oxygen reduction reaction