Abstract
In order to understand the grain size and porosity dependent mechanical behavior of porous, multi-phase nanocrystalline ceramics, each phase is treated as a mixture of grain interior and grain boundary, and pores are taken as a single phase. In conjunction with the secant-modulus approach and iso-strain assumption, Budiansky's self-consistent method is extended to build a constitutive model for nanocrystalline ceramics with small plastic deformation. Based on the developed model, the predicted yield strength (0-0.2) values of porous, multi-phase nanocrystalline ceramics with different grain size and porosity are compared with experimental data in the literature, the comparison shows that the predictions are in good agreement with the published data. This suggests that the developed model is capable of describing the grain size and porosity dependent mechanical behaviors of nanocrystalline ceramics with small plastic deformation.
Original language | English |
---|---|
Pages (from-to) | 50-53 |
Number of pages | 4 |
Journal | Key Engineering Materials |
Volume | 353-358 |
Issue number | PART 1 |
DOIs | |
State | Published - 2007 |
Event | Asian Pacific Conference for Fracture and Strength (APCFS'06) - Sanya, Hainan Island, China Duration: 22 Nov 2006 → 25 Nov 2006 |
Keywords
- Constitutive modeling
- Grain size
- Nanocrystalline ceramics
- Porosity
- Yield stress