Tin nanoparticles impregnated in nitrogen-doped graphene for lithium-ion battery anodes

Xiaosi Zhou, Jianchun Bao, Zhihui Dai, Yu Guo Guo

Research output: Contribution to journalArticlepeer-review

122 Scopus citations

Abstract

Tin possesses a high theoretical specific capacity as anode materials for Li-ion batteries, and considerable efforts have been contributed to mitigating the capacity fading along with its huge volume expansion during lithium insertion and extraction processes, mainly through nanostructured material design. Herein, we present Sn nanoparticles encapsulated in nitrogen-doped graphene sheets through heat-treatment of the SnO2 nanocrystals/nitrogen-doped graphene hybrid. The specific architecture of the as-prepared Sn@N-RGO involves three advantages, including a continuous graphene conducting network, coating Sn surface through Sn-N and Sn-O bonding generated between Sn nanoparticles and graphene, and porous and flexible structure for accommodating the large volume changes of Sn nanoparticles. As an anode material for lithium-ion batteries, the hybrid exhibits a reversible capacity of 481 mA h g-1 after 100 cycles under 0.1 A g-1 and a charge capacity as high as 307 mA h g-1 under 2 A g-1.

Original languageEnglish
Pages (from-to)25367-25373
Number of pages7
JournalJournal of Physical Chemistry C
Volume117
Issue number48
DOIs
StatePublished - 5 Dec 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Tin nanoparticles impregnated in nitrogen-doped graphene for lithium-ion battery anodes'. Together they form a unique fingerprint.

Cite this