TY - JOUR
T1 - Treatment of Phenol-Containing Coal Chemical Biochemical Tailwater by Catalytic Ozonation Using Mn-Ce/γ-Al2O3
AU - Zhou, Jun
AU - Sun, Yongjun
AU - Sun, Wenquan
AU - Hong, Fei
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/9
Y1 - 2022/9
N2 - In this study, a Mn-Ce/γ-Al2O3 catalyst with multiple active components was prepared through the doping–calcination method for advanced treatment of coal chemical biochemical treatment effluent and characterized by X-ray diffraction, X-ray fluorescence spectroscopy, scanning electron microscopy, and BET analysis. In addition, preparation and catalytic ozonation conditions were optimized, and the mechanism of catalytic ozonation was discussed. The Mn-Ce/γ-Al2O3 catalyst significantly enhanced COD and total phenol removal in reaction with ozone. The characterization results suggested that the pore structure of the optimized Mn-Ce/γ-Al2O3 catalyst was significantly improved. After calcination, the metallic elements Mn and Ce existed in the form of the oxides MnO2 and CeO2. The best operating conditions in the study were as follows: (1) reaction time of 30 min, (2) initial pH of 9, (3) ozone dosage of 3.0 g/h, and (4) catalyst dosage of 30 g/L. The removal efficiency of COD and total phenol from coal chemical biochemical tail water was reduced with the addition of tert-butanol, which proves that hydroxyl radicals (•OH) played a leading role in the Mn-Ce/γ-Al2O3 catalytic ozonation treatment process of biochemical tailwater. Ultraviolet absorption spectroscopy analysis indicated that some conjugated structures and benzene ring structures of organics in coal chemical biochemical tail water were destroyed. This work proposes the utilization of the easily available Mn-Ce/γ-Al2O3 catalyst and exhibits application prospects for the advanced treatment of coal chemical biochemical tailwater.
AB - In this study, a Mn-Ce/γ-Al2O3 catalyst with multiple active components was prepared through the doping–calcination method for advanced treatment of coal chemical biochemical treatment effluent and characterized by X-ray diffraction, X-ray fluorescence spectroscopy, scanning electron microscopy, and BET analysis. In addition, preparation and catalytic ozonation conditions were optimized, and the mechanism of catalytic ozonation was discussed. The Mn-Ce/γ-Al2O3 catalyst significantly enhanced COD and total phenol removal in reaction with ozone. The characterization results suggested that the pore structure of the optimized Mn-Ce/γ-Al2O3 catalyst was significantly improved. After calcination, the metallic elements Mn and Ce existed in the form of the oxides MnO2 and CeO2. The best operating conditions in the study were as follows: (1) reaction time of 30 min, (2) initial pH of 9, (3) ozone dosage of 3.0 g/h, and (4) catalyst dosage of 30 g/L. The removal efficiency of COD and total phenol from coal chemical biochemical tail water was reduced with the addition of tert-butanol, which proves that hydroxyl radicals (•OH) played a leading role in the Mn-Ce/γ-Al2O3 catalytic ozonation treatment process of biochemical tailwater. Ultraviolet absorption spectroscopy analysis indicated that some conjugated structures and benzene ring structures of organics in coal chemical biochemical tail water were destroyed. This work proposes the utilization of the easily available Mn-Ce/γ-Al2O3 catalyst and exhibits application prospects for the advanced treatment of coal chemical biochemical tailwater.
KW - activated alumina
KW - advanced treatment
KW - biochemical tail water
KW - catalyst
KW - catalytic ozonation
UR - http://www.scopus.com/inward/record.url?scp=85138530911&partnerID=8YFLogxK
U2 - 10.3390/catal12091019
DO - 10.3390/catal12091019
M3 - 文章
AN - SCOPUS:85138530911
SN - 2073-4344
VL - 12
JO - Catalysts
JF - Catalysts
IS - 9
M1 - 1019
ER -