Tribological behaviors of carbon series additions reinforced CF/PTFE composites at high speed

Pengpeng Ye, Jian Wu, Liwen Mu, Dafang He, Xin Feng, Xiaohua Lu

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The tribological, mechanical, and thermal properties of carbon series additions reinforced CF/PTFE composites at high speed were investigated. In this work, carbon fiber (CF) filled polytetrafluoroethylene (PTFE) composites, which have excellent tribological properties under normal sliding speed (1.4 m/s), were filled with some carbon materials [graphene (GE), carbon nanotubes (CNTs) and graphite (Gr)] respectively to investigate the tribological properties of CF/PTFE composites at high sliding speed (2.1 and 2.5 m/s). The results reveal that the carbon series additions can improve the friction and anti-wear performances of CF/PTFE, and GE is the most effective filler. The wear rate of 0.8 wt % GE/CF/PTFE was decreased by 50 - 55%, 55 - 60%, 40 - 45% at 1.4, 2.1, and 2.5 m/s compared with CF/PTFE. SEM study shows GE could be helpful to form smooth and continuous transfer film on the surface of counterparts. Meanwhile, GE can improve its tensile strength and elastic modulus obviously. Thin layer structure of GE could enhance the thermal conductivity, which can be helpful to dissipate heat of CF/PTFE composites wear surface.

Original languageEnglish
Article number43236
JournalJournal of Applied Polymer Science
Volume133
Issue number20
DOIs
StatePublished - 20 May 2016

Keywords

  • applications
  • composites
  • friction
  • graphene and fullerenes
  • mechanical properties
  • nanotubes
  • wear and lubrication

Fingerprint

Dive into the research topics of 'Tribological behaviors of carbon series additions reinforced CF/PTFE composites at high speed'. Together they form a unique fingerprint.

Cite this