TY - JOUR
T1 - Tunable intramolecular H-bonding promotes benzoic acid activity in polymerization
T2 - Inspiration from nature
AU - Xu, Jiaxi
AU - Yang, Kun
AU - Li, Zhenjiang
AU - Liu, Jingjing
AU - Sun, Herui
AU - Xu, Songquan
AU - Wang, Haixin
AU - Guo, Tianfo
AU - Dong, He
AU - Guo, Kai
N1 - Publisher Copyright:
© 2017 The Royal Society of Chemistry.
PY - 2017/11/7
Y1 - 2017/11/7
N2 - Ring-opening polymerization (ROP) of lactones and cyclic carbonates catalyzed by (super)strong Brønsted acids offers a valuable approach to generate biodegradable aliphatic polyesters. However, these strong acids usually lead to backbiting and decarboxylation; thus a mild and effective acidic catalysis for these ROPs becomes necessary. Inspired by weak Brønsted acidic catalysis in squalene-hopene cyclases, we propose that ortho-amido group(s) on benzoic acids would increase the acidity of the carboxylic moiety by intramolecular H-bonding, and make carboxylic acid active in promoting the ROPs. A series of o-amido- and o,o′-bis(amido)-benzoic acids are evaluated as typical intramolecular H-bonding enhanced Brønsted acidic catalysts in the ROPs. Both o-amido- and o,o′-bis(amido)-benzoic acids exhibited good to excellent performances in the rate and control of ROPs of δ-valerolactone (VL), ϵ-caprolactone (CL), and trimethylene carbonate (TMC) at room temperature in solutions. An exceptional carboxylic acid, o,o′-bis(pivalamido)benzoic acid, showed efficient activation in solution and precise control with high conversions (91-96%), predicted molecular weights from 3.09 to 10.31 kg mol-1, and narrow dispersities (D 1.03-1.12) in ROPs of CL and TMC. Well-defined diblock copolymers consisting of PTMC, PVL and PCL segments were synthesized. The controlled/living characteristics of the ROPs were verified by chain extension experiments. 1H NMR, SEC, and MALDI-TOF MS analyses strongly indicated that the obtained polymers were exactly the designated ones. A cationic monomer activation mechanism was proposed and was supported by NMR titrations. The experimental results indicated that mild and tunable ortho-amido benzoic acid with intramolecular H-bonding is a competent organocatalyst in living polymerization.
AB - Ring-opening polymerization (ROP) of lactones and cyclic carbonates catalyzed by (super)strong Brønsted acids offers a valuable approach to generate biodegradable aliphatic polyesters. However, these strong acids usually lead to backbiting and decarboxylation; thus a mild and effective acidic catalysis for these ROPs becomes necessary. Inspired by weak Brønsted acidic catalysis in squalene-hopene cyclases, we propose that ortho-amido group(s) on benzoic acids would increase the acidity of the carboxylic moiety by intramolecular H-bonding, and make carboxylic acid active in promoting the ROPs. A series of o-amido- and o,o′-bis(amido)-benzoic acids are evaluated as typical intramolecular H-bonding enhanced Brønsted acidic catalysts in the ROPs. Both o-amido- and o,o′-bis(amido)-benzoic acids exhibited good to excellent performances in the rate and control of ROPs of δ-valerolactone (VL), ϵ-caprolactone (CL), and trimethylene carbonate (TMC) at room temperature in solutions. An exceptional carboxylic acid, o,o′-bis(pivalamido)benzoic acid, showed efficient activation in solution and precise control with high conversions (91-96%), predicted molecular weights from 3.09 to 10.31 kg mol-1, and narrow dispersities (D 1.03-1.12) in ROPs of CL and TMC. Well-defined diblock copolymers consisting of PTMC, PVL and PCL segments were synthesized. The controlled/living characteristics of the ROPs were verified by chain extension experiments. 1H NMR, SEC, and MALDI-TOF MS analyses strongly indicated that the obtained polymers were exactly the designated ones. A cationic monomer activation mechanism was proposed and was supported by NMR titrations. The experimental results indicated that mild and tunable ortho-amido benzoic acid with intramolecular H-bonding is a competent organocatalyst in living polymerization.
UR - http://www.scopus.com/inward/record.url?scp=85032449429&partnerID=8YFLogxK
U2 - 10.1039/c7py01451a
DO - 10.1039/c7py01451a
M3 - 文章
AN - SCOPUS:85032449429
SN - 1759-9954
VL - 8
SP - 6398
EP - 6406
JO - Polymer Chemistry
JF - Polymer Chemistry
IS - 41
ER -