Abstract
Two-dimensional Ruddlesden–Popper layered metal-halide perovskites have attracted increasing attention for their desirable optoelectronic properties and improved stability compared to their three-dimensional counterparts. However, such perovskites typically consist of multiple quantum wells with a random well width distribution. Here, we report phase-pure quantum wells with a single well width by introducing molten salt spacer n-butylamine acetate, instead of the traditional halide spacer n-butylamine iodide. Due to the strong ionic coordination between n-butylamine acetate and the perovskite framework, a gel of a uniformly distributed intermediate phase can be formed. This allows phase-pure quantum well films with microscale vertically aligned grains to crystallize from their respective intermediate phases. The resultant solar cells achieve a power conversion efficiency of 16.25% and a high open voltage of 1.31 V. After keeping them in 65 ± 10% humidity for 4,680 h, under operation at 85 °C for 558 h, or continuous light illumination for 1,100 h, the cells show <10% efficiency degradation.
Original language | English |
---|---|
Pages (from-to) | 38-45 |
Number of pages | 8 |
Journal | Nature Energy |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2021 |