Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 v High-Voltage Batteries

Yue Ma, Jun Ma, Jingchao Chai, Zhihong Liu, Guoliang Ding, Gaojie Xu, Haisheng Liu, Bingbing Chen, Xinhong Zhou, Guanglei Cui, Liquan Chen

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li+/Li, an ionic conductivity of 6.79 × 10-4 S cm-1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn2+ ions at 25 and 55 °C. Thus, the LiNi0.5Mn1.5O4/Li and LiNi0.5Mn1.5O4/Li4Ti5O12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

Original languageEnglish
Pages (from-to)41462-41472
Number of pages11
JournalACS Applied Materials and Interfaces
Volume9
Issue number47
DOIs
StatePublished - 29 Nov 2017
Externally publishedYes

Keywords

  • gel polymer electrolyte
  • high voltage lithium batteries
  • in situ polymerization
  • poly(acrylic anhydride)
  • poly(methyl methacrylate)

Fingerprint

Dive into the research topics of 'Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 v High-Voltage Batteries'. Together they form a unique fingerprint.

Cite this