Abstract
Clay-based aerogel is a promising material in the field of thermal insulation and flame retardant, but obtaining clay-based aerogel with high fire resistance, low thermal conductivity, hydrophobicity, and mechanical robustness remains a challenge. In this work, palygorskite-based aerogel was successfully fabricated via combining with a very small proportion of alginate to form a distinctive hierarchically meso-microporous structure. By employing ethanol solution (EA) replacement method and freeze-drying process, the resultant aerogel exhibited ultralow density (0.035-0.052 g/cm3), practical mechanical strengths (0.7-2.1 MPa), and low thermal conductivity of 0.0332-0.165 W/mK (25-1000 °C). The hydrophobicity of aerogel was achieved by simple chemical vapor deposition of methyltrimethoxysilane (MTMS). The Pal-based aerogel showed good performance in both fire resistance with high limiting oxygen index up to 90%, and heat resistance with tolerance of flame up to 1000 °C for 10 min. This renewable Pal-based aerogel with a 3D framework is a promising material to be applied in fields of construction and aerospace for thermal insulation and high fire resistance.
Original language | English |
---|---|
Pages (from-to) | 11815-11824 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 12 |
Issue number | 10 |
DOIs | |
State | Published - 11 Mar 2020 |
Keywords
- aerogel
- flame retardancy
- hydrophobicity
- palygorskite-based
- thermal insulation