Abstract
Photoelectrochemical (PEC) sensors have emerged as potential analysis techniques in recent years due to PEC’s benefits, which include straightforward operation, quick response times, and basic equipment. In this work, a new PEC sandwich immunoassay was fabricated, which was based on low-toxicity BiOI/BiOCl composites accompanied by enhanced signal detection via AgI-conjugated antibodies (Ab2-AgI). Specifically, the low-toxicity inorganic semiconductor BiOI/BiOCl composites were first utilized in PEC bioanalysis. Owing to the unique configuration of energy levels between BiOI and BiOCl, the photoelectric response was more excellent than those of BiOI or BiOCl alone. Moreover, the Ab2-AgI conjugates were utilized as signal amplification components through the specific antibody–antigen immunoreaction. In the presence of target Ag, the immobilized Ab2-AgI conjugates clearly improve the steric hindrance of the sensing electrode and effectively hinder the transfer of photo-induced holes; meanwhile, AgI NPs can competitively absorb excitation light. A new PEC immunosensing platform for detecting tumor markers at 0 V under visible light excitation was developed, and using carcinoembryonic antigen (CEA) as a model analyte demonstrated an ultra-low detection limit of 4.9 fg·mL−1. Meanwhile, it demonstrated excellent specificity and stability, potentially opening up a novel and promising platform for detecting other critical biomarkers.
Original language | English |
---|---|
Article number | 164 |
Journal | Chemosensors |
Volume | 13 |
Issue number | 5 |
DOIs | |
State | Published - May 2025 |
Keywords
- bioanalysis
- biomarkers
- composites
- immunoreaction
- photoelectrochemical
- signal amplification