Abstract
The ability to finely bind colloidal photonic crystals with nanocrystals (NCs) is critical in many applications ranging from light-emitting devices to flexible displays and biological labels. Herein, the use of carbosilane- thioether generation 2 vinyl-terminated (G2-Vi) dendrimers facilitates zero dimensional (0D) and two dimensional (2D) microreactors with high-uptake NCs, allowing them to generate fluorescent colloidal photonic crystals. Dendrimer-functionalized microspheres were prepared by seeded copolymerization from micrometer-sized polystyrene (PS) seed particles and G2-Vi dendrimers. As an independent 0D microreactor, such dendrimer-functionalized microsphere latices bearing abundant thioether anchor sites can capture guest metal ion components, followed by the introduction of chalcogenides, and hence the in situ generation of higher-uptake NCs was realized. Furthermore, the as-obtained NC-latex hybrids from 0D microreactors were directly self-assembled into large-scale ordered colloidal arrays with uniform fluorescence. Additionally, compact assemblies from the Cd2+-loaded dendrimer-functionalized microspheres were constructed and were employed as a large-scale 2D reactor. An on-demand fluorescence pattern was freely and quickly displayed via a reaction-induce-response process by screen stencil oriented printing. This journal is
Original language | English |
---|---|
Pages (from-to) | 3610-3616 |
Number of pages | 7 |
Journal | Journal of Materials Chemistry C |
Volume | 2 |
Issue number | 18 |
DOIs | |
State | Published - 14 May 2014 |