TY - JOUR
T1 - Versatile Injectable Carboxymethyl Chitosan Hydrogel for Immediate Hemostasis, Robust Tissue Adhesion Barrier, and Antibacterial Applications
AU - Guo, Hao
AU - Shen, Haifeng
AU - Ma, Juping
AU - Wang, Penghui
AU - Yao, Zheng
AU - Zhang, Wenjie
AU - Tan, Xiaoyan
AU - Chi, Bo
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023
Y1 - 2023
N2 - Iatrogenic ulcers resulting from endoscopic submucosal dissection surgery remain a significant clinical concern due to the risk of uncontrolled bleeding. Herein, we have developed an injectable shear-thinning hydrogel cross-linked through electrostatic interactions and hydrogen bonding. The hydrogel underwent comprehensive characterization, focusing on rheological behavior, injectability, microstructure, film-forming capability, adhesion, swelling behavior, degradation kinetics, antibacterial efficacy, hemostatic performance, and biocompatibility. The incorporation of poly(vinyl alcohol) notably enhanced the internal structural stability and injection pressure, while the Laponite content influenced self-healing ability, modulus, and viscosity. Additionally, the hydrogel exhibited pH sensitivity, appropriate degradation, and swelling rates and displayed favorable film-forming and adhesion properties. Notably, it demonstrated excellent resistance against Escherichia coli and Staphylococcus aureus, highlighting its potential to create an optimal wound environment. In vivo studies further confirmed the hydrogel’s exceptional hemostatic performance, positioning it as an optimal material for endoscopic submucosal dissection (ESD) surgery. Moreover, cell experiments and hemolysis tests revealed high biocompatibility, supporting their potential to facilitate the healing of iatrogenic ulcers post-ESD surgery. In conclusion, our hydrogels hold great promise as endoscopic treatment materials for ESD-induced ulcers given their outstanding properties.
AB - Iatrogenic ulcers resulting from endoscopic submucosal dissection surgery remain a significant clinical concern due to the risk of uncontrolled bleeding. Herein, we have developed an injectable shear-thinning hydrogel cross-linked through electrostatic interactions and hydrogen bonding. The hydrogel underwent comprehensive characterization, focusing on rheological behavior, injectability, microstructure, film-forming capability, adhesion, swelling behavior, degradation kinetics, antibacterial efficacy, hemostatic performance, and biocompatibility. The incorporation of poly(vinyl alcohol) notably enhanced the internal structural stability and injection pressure, while the Laponite content influenced self-healing ability, modulus, and viscosity. Additionally, the hydrogel exhibited pH sensitivity, appropriate degradation, and swelling rates and displayed favorable film-forming and adhesion properties. Notably, it demonstrated excellent resistance against Escherichia coli and Staphylococcus aureus, highlighting its potential to create an optimal wound environment. In vivo studies further confirmed the hydrogel’s exceptional hemostatic performance, positioning it as an optimal material for endoscopic submucosal dissection (ESD) surgery. Moreover, cell experiments and hemolysis tests revealed high biocompatibility, supporting their potential to facilitate the healing of iatrogenic ulcers post-ESD surgery. In conclusion, our hydrogels hold great promise as endoscopic treatment materials for ESD-induced ulcers given their outstanding properties.
KW - antibacterial properties
KW - immediate hemostasis
KW - injectable hydrogel
KW - shear-thinning
KW - tissue adhesion barrier
UR - http://www.scopus.com/inward/record.url?scp=85178332518&partnerID=8YFLogxK
U2 - 10.1021/acsami.3c12027
DO - 10.1021/acsami.3c12027
M3 - 文章
AN - SCOPUS:85178332518
SN - 1944-8244
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
ER -