Abstract
Unveiling the heat transfer behavior of solar collectors in concentrating solar thermochemical energy storage is crucial for harnessing full-spectrum solar light. In this study, a glass Flat Tube-Shaped Heat Pipe (FT-SHP) was developed, and a visualization experimental platform was established to investigate its internal operation mechanisms and heat transfer characteristics. The results revealed that the liquid filling ratio (FR) significantly affects the heat transfer performance, with an optimal value identified as 25%. As the heat flow temperature in the evaporation section increased, both the Bubble Growing Frequency (BGF) and Droplet Condensation Reflux Period (DCRP) decreased, leading to a reduction in thermal resistance. Conversely, an increase in the cooling flow rate resulted in opposite trends in BGF and DCRP within the tube, while both the Reynolds (Re) number and thermal resistance decreased. As such, an empirical correlation between thermal resistance and Re number was derived, demonstrating a nonlinear relationship between thermal resistance, BGF, and DCRP. These findings provide important insights for the design of heat pipes, with the potential to enhance the efficiency and reliability of solar collectors.
Original language | English |
---|---|
Article number | 1219 |
Journal | Energies |
Volume | 18 |
Issue number | 5 |
DOIs | |
State | Published - Mar 2025 |
Keywords
- heat pipe
- solar collector
- solar thermochemical energy storage
- visualization