Abstract
A symmetric solid oxide fuel cell based on yttrium stabilized zirconia (YSZ) electrolyte and PrBaMn2O5+δ (PBMO) electrode was developed by phase inversion and infiltration methods. Symmetric electrolyte support composed of two porous backbones and a thin dense layer were obtained by phase inversion and drop-coating techniques. PBMO catalysts were infiltrated into the finger-like pores of the backbone to serve as electrodes. Scanning electron microscopy results show that the cell has a porous symmetric structure with nanosized PBMO catalysts distributed in finger-like microchannels. With this symmetric structure, the anode polarization resistance for the cell decreased by 46% and the cathode polarization resistance decreased by 39% at 800 °C. The power outputs were improved by 100% in H2 and CH4 fuel gas at 800 °C. These results imply that optimizing the microstructure of the electrolyte support is a promising approach to increase active surface areas and further improve the cell performance for SOFCs.
Original language | English |
---|---|
Pages (from-to) | 11-18 |
Number of pages | 8 |
Journal | Energy Conversion and Management |
Volume | 177 |
DOIs | |
State | Published - 1 Dec 2018 |
Keywords
- Infiltrated perovskite electrodes
- Phase inversion tape casting
- Solid oxide fuel cell
- YSZ substrates