TY - JOUR
T1 - A comparison of static and rotordynamic characteristics for two types of liquid annular seals with parallelly grooved stator/rotor
AU - Li, Zhigang
AU - Fang, Zhi
AU - Li, Jun
N1 - Publisher Copyright:
Copyright © 2020 by ASME.
PY - 2020/9
Y1 - 2020/9
N2 - Liquid annular seals with parallelly grooved stator or rotor are used as replacements for smooth plain seals in centrifugal pumps to reduce leakage and break up contaminants within the working fluid. Parallelly grooved liquid annular seals have advantages of less leakage and smaller possibility of abrasion when the seal rotor-stator rubs in comparison to smooth plain seals. This paper deals with the static and rotordynamic characteristics of parallelly grooved liquid annular seals, which are limited in the literature. Numerical results of leakage flow rates, drag powers, and rotordynamic force coefficients were presented and compared for a grooved-stator/smooth-rotor (GS-SR) liquid annular seal and a smooth-stator/grooved-rotor (SS-GR) liquid annular seal, utilizing a modified transient computational fluid dynamics-based perturbation approach based on the multiple-frequency elliptical-orbit rotor whirling model. Both liquid annular seals have identical seal axial length, rotor diameter, sealing clearance, groove number, and geometry. The present transient computational fluid dynamics-based perturbation method was adequately validated based on the published experiment data of leakage flow rates and frequency-independent rotordynamic force coefficients for the GS-SR and SS-GR liquid annular seals at various pressure drops with differential inlet preswirl ratios. Simulations were performed at three pressure drops (4.14 bar, 6.21 bar, and 8.27 bar), three rotational speeds (2 krpm, 4 krpm, and 6 krpm) and three inlet preswirl ratios (0, 0.5, and 1.0), applying a wide rotor whirling frequency range up to 200 Hz, to analyze and compare the influences of operation conditions on the static and rotordynamic characteristics for both the GS-SR and SS-GR liquid annular seals. Results show that the present two liquid annular seals possess similar sealing capability, and the SS-GR seal produces a slightly larger (∼2-10%) drag power loss than the GS-SR seal. For small rotor whirling motion around a centered position, both seals have the identical direct force coefficients and the equal-magnitude opposite-sign cross-coupling force coefficients in the orthogonal directions x and y. For all operation conditions, both the GS-SR and SS-GR liquid annular seals possess negative direct stiffness K and positive direct damping C. The GSSR seal produces purely positive Ceff throughout the whirling frequency range for all operation conditions, while Ceff for the SS-GR seal shows a significant decrease and transitions to negative value at the crossover frequency fco with increasing rotational speed and inlet preswirl. From a rotordynamic viewpoint, the GS-SR liquid annular seal is a better seal concept for pumps.
AB - Liquid annular seals with parallelly grooved stator or rotor are used as replacements for smooth plain seals in centrifugal pumps to reduce leakage and break up contaminants within the working fluid. Parallelly grooved liquid annular seals have advantages of less leakage and smaller possibility of abrasion when the seal rotor-stator rubs in comparison to smooth plain seals. This paper deals with the static and rotordynamic characteristics of parallelly grooved liquid annular seals, which are limited in the literature. Numerical results of leakage flow rates, drag powers, and rotordynamic force coefficients were presented and compared for a grooved-stator/smooth-rotor (GS-SR) liquid annular seal and a smooth-stator/grooved-rotor (SS-GR) liquid annular seal, utilizing a modified transient computational fluid dynamics-based perturbation approach based on the multiple-frequency elliptical-orbit rotor whirling model. Both liquid annular seals have identical seal axial length, rotor diameter, sealing clearance, groove number, and geometry. The present transient computational fluid dynamics-based perturbation method was adequately validated based on the published experiment data of leakage flow rates and frequency-independent rotordynamic force coefficients for the GS-SR and SS-GR liquid annular seals at various pressure drops with differential inlet preswirl ratios. Simulations were performed at three pressure drops (4.14 bar, 6.21 bar, and 8.27 bar), three rotational speeds (2 krpm, 4 krpm, and 6 krpm) and three inlet preswirl ratios (0, 0.5, and 1.0), applying a wide rotor whirling frequency range up to 200 Hz, to analyze and compare the influences of operation conditions on the static and rotordynamic characteristics for both the GS-SR and SS-GR liquid annular seals. Results show that the present two liquid annular seals possess similar sealing capability, and the SS-GR seal produces a slightly larger (∼2-10%) drag power loss than the GS-SR seal. For small rotor whirling motion around a centered position, both seals have the identical direct force coefficients and the equal-magnitude opposite-sign cross-coupling force coefficients in the orthogonal directions x and y. For all operation conditions, both the GS-SR and SS-GR liquid annular seals possess negative direct stiffness K and positive direct damping C. The GSSR seal produces purely positive Ceff throughout the whirling frequency range for all operation conditions, while Ceff for the SS-GR seal shows a significant decrease and transitions to negative value at the crossover frequency fco with increasing rotational speed and inlet preswirl. From a rotordynamic viewpoint, the GS-SR liquid annular seal is a better seal concept for pumps.
KW - Drag power loss
KW - Leakage flow
KW - Liquid annular seal
KW - Numerical simulation
KW - Rotordynamic characteristics
UR - http://www.scopus.com/inward/record.url?scp=85107389294&partnerID=8YFLogxK
U2 - 10.1115/1.4048144
DO - 10.1115/1.4048144
M3 - 文章
AN - SCOPUS:85107389294
SN - 0742-4795
VL - 142
JO - Journal of Engineering for Gas Turbines and Power
JF - Journal of Engineering for Gas Turbines and Power
IS - 9
M1 - 091012
ER -