A Data-Augmented CGO-GAM Prediction Method for Plasma Hydrophilic Modification

Wenjie Xu, Wenhao Zhou, Feng Liu, Tingting Li, Zhi Fang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Polymer materials often require surface modification to address inherent structural limitations and enhance performance. This study presents a data-augmented chaotic game optimization- generalized additive model (CGO-GAM) designed to predict plasma hydrophilic modification, achieving high accuracy even with a limited number of data samples. The data augmentation method utilizing Generative Adversarial Networks (GAN) enhances the balance of modified data, particularly by supplementing hydrophilicity data in instances where treatment effects are suboptimal and data distribution is limited. The adaptive GAM algorithm effectively manages the nonlinear relationships among discharge parameters, gas gaps, gas compositions, and the effects of nanosecond-pulse dielectric barrier discharge (DBD) surface modifications. CGO-generated random perturbations, refined through mutation and crossover operations, enhance population diversity, effectively mitigating issues of early convergence and overfitting while improving the balance between global and local search strategies. The proposed model achieves an accuracy of 90% in predicting hydrophilic modification performance, demonstrating superiority over traditional methods such as Support Vector Machines (SVM) and General Regression Neural Networks (GRNN).

源语言英语
主期刊名Proceedings of the 1st Electrical Artificial Intelligence Conference, Volume 3 - EAIC 2024
编辑Ronghai Qu, Zhengxiang Song, Zhiming Ding, Gang Mu, Rui Xiong, Li Han
出版商Springer Science and Business Media Deutschland GmbH
350-359
页数10
ISBN(印刷版)9789819640669
DOI
出版状态已出版 - 2025
活动1st Electrical Artificial Intelligence Conference, EAIC 2024 - Nanjing, 中国
期限: 6 12月 20248 12月 2024

出版系列

姓名Lecture Notes in Electrical Engineering
1396 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议1st Electrical Artificial Intelligence Conference, EAIC 2024
国家/地区中国
Nanjing
时期6/12/248/12/24

指纹

探究 'A Data-Augmented CGO-GAM Prediction Method for Plasma Hydrophilic Modification' 的科研主题。它们共同构成独一无二的指纹。

引用此