TY - JOUR
T1 - A flame-retardant polyimide interlayer with polysulfide lithium traps and fast redox conversion towards safety and high sulfur utilization Li-S batteries
AU - Zhou, Zhiyu
AU - Chen, Zexiang
AU - Zhao, Yang
AU - Lv, Huifang
AU - Wei, Hualiang
AU - Chen, Bingbing
AU - Gu, Zengjie
AU - Wang, Yan
N1 - Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2022/1/21
Y1 - 2022/1/21
N2 - In recent years and following the progress made in lithium-ion battery technology, substantial efforts have been devoted to developing practical lithium-sulfur (Li-S) batteries for next-generation commercial energy storage devices. The practical application of Li-S batteries is still limited by dramatically reduced capacities, cycling instabilities, and safety issues arising from flammable components. In this study, we designed and fabricated a flame-retardant, multifunctional interlayer which integrated electroconductive networks, lithium polysulfide (LiPS) traps and catalysts to significantly elevate the electrochemical performance and safety of pristine Li-S batteries. The LiPS adsorptive polymer polyimide (PI) constrains polysulfides to the cathode region and effectively suppresses the shuttle effect. Coralloid PI/multiwalled carbon nanotube (MCNT) compounds provide plentiful reaction sites for active materials. The catalytic Ni on the metal skeleton surface notably promotes Li+ diffusion, lowers the redox overpotential and accelerates LiPS conversion, which improves the redox kinetics associated with sulfur-related species and significantly elevates sulfur utilization. At different current densities of 0.2 C and 0.5 C, impressive initial discharge capacities of 1275.3 mA h g-1 and 1190.9 mA h g-1 are attainable respectively, with high capacity retentions of 80.3% and 78.6% over 600 cycles. Besides, the multifunctional interlayer can also act as a flame-retardant layer to promote the safety of Li-S batteries by inhibiting the spread of fire. This study provides a feasible and prospective strategy that adopts a multifunctional interlayer to develop Li-S batteries with higher capacities, longer cycling lives and safer working conditions.
AB - In recent years and following the progress made in lithium-ion battery technology, substantial efforts have been devoted to developing practical lithium-sulfur (Li-S) batteries for next-generation commercial energy storage devices. The practical application of Li-S batteries is still limited by dramatically reduced capacities, cycling instabilities, and safety issues arising from flammable components. In this study, we designed and fabricated a flame-retardant, multifunctional interlayer which integrated electroconductive networks, lithium polysulfide (LiPS) traps and catalysts to significantly elevate the electrochemical performance and safety of pristine Li-S batteries. The LiPS adsorptive polymer polyimide (PI) constrains polysulfides to the cathode region and effectively suppresses the shuttle effect. Coralloid PI/multiwalled carbon nanotube (MCNT) compounds provide plentiful reaction sites for active materials. The catalytic Ni on the metal skeleton surface notably promotes Li+ diffusion, lowers the redox overpotential and accelerates LiPS conversion, which improves the redox kinetics associated with sulfur-related species and significantly elevates sulfur utilization. At different current densities of 0.2 C and 0.5 C, impressive initial discharge capacities of 1275.3 mA h g-1 and 1190.9 mA h g-1 are attainable respectively, with high capacity retentions of 80.3% and 78.6% over 600 cycles. Besides, the multifunctional interlayer can also act as a flame-retardant layer to promote the safety of Li-S batteries by inhibiting the spread of fire. This study provides a feasible and prospective strategy that adopts a multifunctional interlayer to develop Li-S batteries with higher capacities, longer cycling lives and safer working conditions.
UR - http://www.scopus.com/inward/record.url?scp=85123572291&partnerID=8YFLogxK
U2 - 10.1039/d1nr07173d
DO - 10.1039/d1nr07173d
M3 - 文章
C2 - 34937072
AN - SCOPUS:85123572291
SN - 2040-3364
VL - 14
SP - 700
EP - 714
JO - Nanoscale
JF - Nanoscale
IS - 3
ER -