TY - JOUR
T1 - A Novel Energetic Perchlorate Amine Salt
T2 - Synthesis, Properties, and Density Functional Theory Calculation
AU - Ma, Peng
AU - Pan, Yong
AU - Jiang, Juncheng
AU - Zhu, Shunguan
N1 - Publisher Copyright:
© 2017 Taylor & Francis Group, LLC.
PY - 2017/10/2
Y1 - 2017/10/2
N2 - A novel explosive, ethylenediamine triethylenediamine tetraperchlorate (ETT), was synthesized by a rapid “ one-pot” method. The molecular and crystal structures of ETT were determined by X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The purity of the ETT was characterized by hydrogen nuclear magnetic resonance (H-NMR) spectra and elemental analysis (EA). The chemical and physical properties of the co-crystal ETT were further explored including impact sensitivity, velocity of detonation, and thermal behavior. The impact sensitivity of the ETT (h50% = 9.50 cm) is much lower than that of its components, ethylenediamine diperchlorate (ED) (h50% = 5.60 cm) and triethylenediamine diperchlorate (TD) (h50% = 2.10 cm). The measured detonation velocity is 8956 m/s (ρ = 1.873 g/cm3), which is much higher than that of TNT (6900 m/s) or RDX (8350 m/s). The co-crystal ETT shows a unique thermal behavior with a decomposition peak temperature at 365 °C. Band structure and density of states (DOS) of the ETT were confirmed by the CASTEP code. The first-principles tight-binding method within the general gradient approximation (GGA) was employed to study the electronic band structure as well as the DOS and Fermi energy. Hirshfeld surfaces were applied to analyze the intermolecular interactions in the co-crystal, and the results showed that weak interaction was dominantly mediated by H … O hydrogen bond. By analyzing the bond length at different temperatures, N-H covalent bond is the trigger bond for the ETT.
AB - A novel explosive, ethylenediamine triethylenediamine tetraperchlorate (ETT), was synthesized by a rapid “ one-pot” method. The molecular and crystal structures of ETT were determined by X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The purity of the ETT was characterized by hydrogen nuclear magnetic resonance (H-NMR) spectra and elemental analysis (EA). The chemical and physical properties of the co-crystal ETT were further explored including impact sensitivity, velocity of detonation, and thermal behavior. The impact sensitivity of the ETT (h50% = 9.50 cm) is much lower than that of its components, ethylenediamine diperchlorate (ED) (h50% = 5.60 cm) and triethylenediamine diperchlorate (TD) (h50% = 2.10 cm). The measured detonation velocity is 8956 m/s (ρ = 1.873 g/cm3), which is much higher than that of TNT (6900 m/s) or RDX (8350 m/s). The co-crystal ETT shows a unique thermal behavior with a decomposition peak temperature at 365 °C. Band structure and density of states (DOS) of the ETT were confirmed by the CASTEP code. The first-principles tight-binding method within the general gradient approximation (GGA) was employed to study the electronic band structure as well as the DOS and Fermi energy. Hirshfeld surfaces were applied to analyze the intermolecular interactions in the co-crystal, and the results showed that weak interaction was dominantly mediated by H … O hydrogen bond. By analyzing the bond length at different temperatures, N-H covalent bond is the trigger bond for the ETT.
KW - DFT calculation
KW - ethylenediamine triethylenediamine tetraperchlorate
KW - explosion properties
KW - structure analysis
UR - http://www.scopus.com/inward/record.url?scp=85008230704&partnerID=8YFLogxK
U2 - 10.1080/07370652.2016.1269851
DO - 10.1080/07370652.2016.1269851
M3 - 文章
AN - SCOPUS:85008230704
SN - 0737-0652
VL - 35
SP - 443
EP - 457
JO - Journal of Energetic Materials
JF - Journal of Energetic Materials
IS - 4
ER -