A self-adhesive hierarchical nanofiber patch for dynamic and multistage management of full-thickness cutaneous wounds

Lihuang Wu, Yuqi Wang, Xinyue Zhao, Tingting Zhao, Junhua Li, Yi Kuang, Yiyan He, Shengxiang Yang, Zhongwei Gu, Hongli Mao

科研成果: 期刊稿件文章同行评审

摘要

Full-thickness cutaneous wounds pose a significant threat to global health due to their complex healing demands. Standard clinical wound dressings often fall short in providing the adaptability and functionality required for the entire healing process. While hierarchically engineered nanofiber dressings have shown advancement in wound management, challenges such as material compatibility and interfacial bonding during their design have limited both manufacturing and therapeutic outcomes. This study introduces a self-adhesive hierarchical nanofiber (SAHN) patch designed to provide a comprehensive and dynamic approach to wound care. The SAHN patch strategically integrates synthetic biodegradable poly(ester carbonate) with natural bioactive components, forming a seamless dual-layer system that offers both immediate protection and sustained bioactivity to support tissue regeneration. In vitro and in vivo studies demonstrate the patch’s superior interlayer adhesion, soft tissue adhesion, controlled degradation, and robust antibacterial capabilities. These features collectively safeguard the wound microenvironment, facilitate hemostasis, manage inflammation, and accelerate wound closure. Our findings highlight the transformative potential of the SAHN patch in improving traditional wound care, overcoming the manufacturing challenges associated with hierarchical nanofiber dressings, and offering a promising solution for dynamic and multistage management of full-thickness cutaneous wounds that aligns with the natural progression of tissue repair.

源语言英语
文章编号448
期刊Journal of Nanobiotechnology
23
1
DOI
出版状态已出版 - 12月 2025

引用此