TY - JOUR
T1 - Activated carbon prepared from catechol distillation residue for efficient adsorption of aromatic organic compounds from aqueous solution
AU - Liu, Qing
AU - Yang, Junhao
AU - Li, Huanhuan
AU - Ye, Jiahua
AU - Fei, Zhaoyang
AU - Chen, Xian
AU - Zhang, Zhuxiu
AU - Tang, Jihai
AU - Cui, Mifen
AU - Qiao, Xu
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2021/4
Y1 - 2021/4
N2 - At present, activated carbon (AC) derived from industrial wastes has a great practical significance. In this work, residue activated carbon (RAC) was successfully synthesized from catechol distillation residue by a simple activation process based on two steps. The optimized RAC (RAC-800, activated at 800 °C) had high specific surface area (1800 m2/g) and large total pore volume (0.91 cm3/g). RAC-800 portrayed the evident increase of the graphitic structure and possessed abundant functional groups. Catechol (CC), phthalic acid (PA) and dimethyl phthalate (DMP) were chosen as typical pollutant to investigate the effect of different functional groups on adsorption aromatic compounds, and the equilibrium adsorption capacity of RAC-800 for CC, PA and DMP was 221.5, 365.0 and 449.9 mg/g, respectively. The adsorption behaviors were systematically studied by the combination of kinetic and thermodynamic model. The adsorption process was dominated by the π-π interaction, assisted by hydrogen bonding, hydrophobic and electrostatic interactions. In addition, regeneration study showed that the adsorption capacity can still remain over 88.5% after five cycles. In total, fine chemical distillation residues are promising to turn into the precursor of activated carbon, which has potential to be used as a good adsorbent for removal of aromatic compounds.
AB - At present, activated carbon (AC) derived from industrial wastes has a great practical significance. In this work, residue activated carbon (RAC) was successfully synthesized from catechol distillation residue by a simple activation process based on two steps. The optimized RAC (RAC-800, activated at 800 °C) had high specific surface area (1800 m2/g) and large total pore volume (0.91 cm3/g). RAC-800 portrayed the evident increase of the graphitic structure and possessed abundant functional groups. Catechol (CC), phthalic acid (PA) and dimethyl phthalate (DMP) were chosen as typical pollutant to investigate the effect of different functional groups on adsorption aromatic compounds, and the equilibrium adsorption capacity of RAC-800 for CC, PA and DMP was 221.5, 365.0 and 449.9 mg/g, respectively. The adsorption behaviors were systematically studied by the combination of kinetic and thermodynamic model. The adsorption process was dominated by the π-π interaction, assisted by hydrogen bonding, hydrophobic and electrostatic interactions. In addition, regeneration study showed that the adsorption capacity can still remain over 88.5% after five cycles. In total, fine chemical distillation residues are promising to turn into the precursor of activated carbon, which has potential to be used as a good adsorbent for removal of aromatic compounds.
KW - Activated carbon
KW - Adsorption mechanism
KW - Aromatic organic compounds
KW - Fine chemical distillation residues
KW - Water treatment
UR - http://www.scopus.com/inward/record.url?scp=85096102909&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2020.128750
DO - 10.1016/j.chemosphere.2020.128750
M3 - 文章
C2 - 33199105
AN - SCOPUS:85096102909
SN - 0045-6535
VL - 269
JO - Chemosphere
JF - Chemosphere
M1 - 128750
ER -