TY - JOUR
T1 - Advanced Treatment of Phosphorus Pesticide Wastewater Using an Integrated Process of Coagulation and Ozone Catalytic Oxidation
AU - Cao, Shengping
AU - Chen, Lei
AU - Zhao, Minyan
AU - Liu, Ankang
AU - Wang, Mingxiu
AU - Sun, Yongjun
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/1
Y1 - 2022/1
N2 - Conventional pretreatment and secondary biochemical treatment are ineffective methods for removing phosphorus from phosphorus-containing pesticide wastewater. In this study, coagulation-coupled ozone catalytic oxidation was used to treat secondary biochemical tailwater of phosphorus-containing pesticide wastewater thoroughly. The effects of the coagulant type, coagulant dosage, coagulant concentration, wastewater pH, stirring rate, and stirring time on the removal efficiency of chemical oxygen demand (COD), total phosphorus (TP), and chromaticity were investigated during coagulation. When the dosage of the coagulant PAFS was equal to 100 mg/L, the concentration of the coagulant, pH, stirring rate, and stirring time were 5 wt%, 8, 100 rpm, and 5 min, respectively, and the removal rates of COD, TP, and chroma in wastewater reached the maximum value of 17.6%, 86.8%, and 50.0%, respectively. Effluent after coagulation was treated via ozone catalytic oxidation. When the respective ozone dosage, H2 O2 dosage, catalyst dosage, and reaction time were 120 mg/L, 0.1 vt‰, 10 wt%, and 90 min, residual COD and chromaticity of the final effluent were 10.3 mg/L and 8, respectively. The coagulation-coupled ozone catalytic oxidation process has good application prospects in the treatment of secondary biochemical tailwater from phosphorus-containing pesticide wastewater.
AB - Conventional pretreatment and secondary biochemical treatment are ineffective methods for removing phosphorus from phosphorus-containing pesticide wastewater. In this study, coagulation-coupled ozone catalytic oxidation was used to treat secondary biochemical tailwater of phosphorus-containing pesticide wastewater thoroughly. The effects of the coagulant type, coagulant dosage, coagulant concentration, wastewater pH, stirring rate, and stirring time on the removal efficiency of chemical oxygen demand (COD), total phosphorus (TP), and chromaticity were investigated during coagulation. When the dosage of the coagulant PAFS was equal to 100 mg/L, the concentration of the coagulant, pH, stirring rate, and stirring time were 5 wt%, 8, 100 rpm, and 5 min, respectively, and the removal rates of COD, TP, and chroma in wastewater reached the maximum value of 17.6%, 86.8%, and 50.0%, respectively. Effluent after coagulation was treated via ozone catalytic oxidation. When the respective ozone dosage, H2 O2 dosage, catalyst dosage, and reaction time were 120 mg/L, 0.1 vt‰, 10 wt%, and 90 min, residual COD and chromaticity of the final effluent were 10.3 mg/L and 8, respectively. The coagulation-coupled ozone catalytic oxidation process has good application prospects in the treatment of secondary biochemical tailwater from phosphorus-containing pesticide wastewater.
KW - Advanced treatment
KW - Biochemical tailwater
KW - Coagulation
KW - Ozone catalytic oxidation
KW - Phosphorus pesticide wastewater
UR - http://www.scopus.com/inward/record.url?scp=85122890189&partnerID=8YFLogxK
U2 - 10.3390/catal12010103
DO - 10.3390/catal12010103
M3 - 文章
AN - SCOPUS:85122890189
SN - 2073-4344
VL - 12
JO - Catalysts
JF - Catalysts
IS - 1
M1 - 103
ER -