摘要
Full utilization of the excited species at both singlet states (1R*) and triplet states (3R*) is crucial to improving electrochemiluminescence (ECL) efficiency but is challenging for organic luminescent materials. Here, an aggregation-induced delayed ECL (AIDECL) active organic dot (OD) containing a benzophenone acceptor and dimethylacridine donor is reported, which shows high ECL efficiency via reverse intersystem crossing (RISC) of non-emissive 3R* to emissive 1R*, overcoming the spin-forbidden radiative decay from 3R*. By introducing dual donor-acceptor pairs into luminophores, it is found that nonradiative pathway could be further suppressed via enhanced intermolecular weak interactions, and multiple spin-up conversion channels could be activated. As a consequence, the obtained OD enjoys a 6.8-fold higher ECL efficiency relative to the control AIDECL-active OD. Single-crystal studies and theoretical calculations reveal that the enhanced AIDECL behaviors come from the acceleration of both radiative transition and RISC. This work represents a major step towards purely organic, high-efficiency ECL dyes and a direction for the design of next-generation ECL dyes at the molecular level.
源语言 | 英语 |
---|---|
文章编号 | e394 |
期刊 | Aggregate |
卷 | 5 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 2月 2024 |