Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries

Sha Fu, Xuanzhi Xie, Xiaoyi Huangyang, Longxi Yang, Xianxiang Zeng, Qiang Ma, Xiongwei Wu, Mingtao Xiao, Yuping Wu

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

High-energy-density lithium metal batteries with high safety and stability are urgently needed. Designing the novel nonflammable electrolytes possessing superior interface compatibility and stability is critical to achieve the stable cycling of battery. Herein, the functional additive dimethyl allyl-phosphate and fluoroethylene carbonate were introduced to triethyl phosphate electrolytes to stabilize the deposition of metallic lithium and accommodate the electrode–electrolyte interface. In comparison with traditional carbonate electrolyte, the designed electrolyte shows high thermostability and inflaming retarding characteristics. Meanwhile, the Li||Li symmetrical batteries with designed phosphonic-based electrolytes exhibit a superior cycling stability of 700 h at the condition of 0.2 mA cm−2, 0.2 mAh cm−2. Additionally, the smooth- and dense-deposited morphology was observed on an cycled Li anode surface, demonstrating that the designed electrolytes show better interface compatibility with metallic lithium anodes. The Li||LiNi0.8Co0.1Mn0.1O2 and Li||LiNi0.6Co0.2Mn0.2O2 batteries paired with phosphonic-based electrolytes show better cycling stability after 200 and 450 cycles at the rate of 0.2 C, respectively. Our work provides a new way to ameliorate nonflammable electrolytes in advanced energy storage systems.

源语言英语
文章编号4106
期刊Molecules
28
10
DOI
出版状态已出版 - 5月 2023
已对外发布

指纹

探究 'Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此