Atomic Layer Deposition on Block Copolymer Membranes with Gyroidal Nanopores Toward Periodically Nanostructured Vapor Sensors: Nanotubes versus Nanorods

科研成果: 期刊稿件文章同行评审

18 引用 (Scopus)

摘要

3D gyroidal networks of ZnO nanorods or nanotubes are synthesized by replicating block copolymer (BCP) templates with gyroidal nanopores via atomic layer deposition (ALD). The generation of 3D ZnO nanorods or nanotubes depends on the thicknesses of deposited ZnO layers, which can be easily and precisely controlled by adjusting ALD cycles. The as-obtained ZnO nanostructures have porosities as high as 77% for gyroidal nanorods and 86% for gyroidal nanotubes due to their unique interconnected structures and rough surfaces. Both gyroidal ZnO nanostructures are used as vapor sensors to detect ethanol with different concentrations. Gyroidal ZnO nanotubes show higher ethanol sensitivity than nanorods because of the inherently interconnected nanotubes and larger porosity. Gyroidal ZnO nanotubes can also act as formaldehyde sensors with the sensitivity as high as 42 to 50 ppm formaldehyde, which is much higher than previously reported sensors based on ZnO nanorods or nanotubes.

源语言英语
文章编号1600017
期刊Advanced Materials Interfaces
3
16
DOI
出版状态已出版 - 19 8月 2016

指纹

探究 'Atomic Layer Deposition on Block Copolymer Membranes with Gyroidal Nanopores Toward Periodically Nanostructured Vapor Sensors: Nanotubes versus Nanorods' 的科研主题。它们共同构成独一无二的指纹。

引用此