Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization

Yuhang Jiang, Wentao Zhao, Shuangshuang Xu, Jingjing Wei, Fernando López Lasaosa, Yiyan He, Hongli Mao, Rosa María Bolea Bailo, Deling Kong, Zhongwei Gu

科研成果: 期刊稿件文章同行评审

53 引用 (Scopus)

摘要

A large number of cytokines or growth factors have been used in the treatment of inflammation. However, they are highly dependent on an optimal delivery system with sufficient loading efficiency and protection of growth factors from proteolytic degradation. To develop the immunotherapy capacity of peptide dendrimers themselves, inspired by the structure and immunoregulatory functions of mannose-capped lipoarabinomannan (ManLAM), we thus propose a hypothesis that mannose-decorated globular lysine dendrimers (MGLDs) with precise molecular design can elicit anti-inflammatory activity through targeting and reprogramming macrophages to M2 phenotype. To achieve this, a series of mannose-decorated globular lysine dendrimers (MGLDs) was developed. Size-controlled MGLDs obtained were spherical with positive surface charges. The mean size ranged from 50-200 nm in varying generations and modification degrees. The initial screening study revealed that MGLDs have superior biocompatibility. When cocultured with MGLDs, mouse bone marrow-derived macrophages (BMDMs) acquired an anti-inflammatory M2 phenotype characterized by significant mannose receptor (MR) clustering on the cell surface and the elongated shape, an increased production of transforming growth factor (TGF)-β1, interleukin (IL)-4 and IL-10, a downregulated secretory of IL-1β, IL-6, and tumor necrosis factor (TNF)-α, and increased ability to induce fibroblast proliferation. Then in vivo studies further demonstrated that topical administration of optimized MGLDs accelerates wound repair of full-thickness cutaneous defects in type 2 diabetic mice via M2 macrophage polarization. Mechanistically, MGLDs treatment showed an enhanced closure rate, collagen deposition, and angiogenesis, along with mitigated inflammation modulated by a suppressed secretory of pro-inflammation cytokines, and increased production of TGF-β1. These findings provide the first evidence that the bioinspired design of MGLDs can direct M2 macrophage polarization, which may be beneficial in the therapy of injuries and inflammation.

源语言英语
文章编号121323
期刊Biomaterials
280
DOI
出版状态已出版 - 1月 2022

指纹

探究 'Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization' 的科研主题。它们共同构成独一无二的指纹。

引用此